, Volume 186, Issue 1, pp 93–98 | Cite as

Increased frontal and paralimbic activation following ayahuasca, the pan-amazonian inebriant

  • Jordi RibaEmail author
  • Sergio Romero
  • Eva Grasa
  • Esther Mena
  • Ignasi Carrió
  • Manel J. Barbanoj
Original Investigation



Ayahuasca is a South American psychoactive plant tea which contains the serotonergic psychedelic N,N-dimethyltryptamine (DMT) and monoamine-oxidase inhibitors that render DMT orally active. Previous investigations with ayahuasca have highlighted a psychotropic effect profile characterized by enhanced introspective attention, with individuals reporting altered somatic perceptions and intense emotional modifications, frequently accompanied by visual imagery. Despite recent advances in the study of ayahuasca pharmacology, the neural correlates of acute ayahuasca intoxication remain largely unknown.


To investigate the effects of ayahuasca administration on regional cerebral blood flow.


Fifteen male volunteers with prior experience in the use of psychedelics received a single oral dose of encapsulated freeze-dried ayahuasca equivalent to 1.0 mg DMT/kg body weight and a placebo in a randomized double-blind clinical trial. Regional cerebral blood flow was measured 100–110 min after drug administration by means of single photon emission tomography (SPECT).


Ayahuasca administration led to significant activation of frontal and paralimbic brain regions. Increased blood perfusion was observed bilaterally in the anterior insula, with greater intensity in the right hemisphere, and in the anterior cingulate/frontomedial cortex of the right hemisphere, areas previously implicated in somatic awareness, subjective feeling states, and emotional arousal. Additional increases were observed in the left amygdala/parahippocampal gyrus, a structure also involved in emotional arousal.


The present results suggest that ayahuasca interacts with neural systems that are central to interoception and emotional processing and point to a modulatory role of serotonergic neurotransmission in these processes.


Ayahuasca Dimethyltryptamine Psychedelics SPECT Regional cerebral blood flow Human 



This work was supported by grant SAF 2002-02746 from the Spanish Ministry of Education and Science and a private donation by Richard Wolfe.

We wish to thank Araceli Cabrero, Sylvie Cotxet, David Martínez, and Llúcia Benito for their help in data collection. The experiment reported in the present article complies with the Spanish law.


  1. Anonymous (2000) Ayahuasca: from the Amazon to the urban jungles. In: The world geopolitics of drugs 1998/1999. Observatoire géopolitique des drogues, Paris, pp 103–107Google Scholar
  2. Buckholtz NS, Boggan WO (1977) Monoamine oxidase inhibition in brain and liver produced by beta-carbolines: structure–activity relationships and substrate specificity. Biochem Pharmacol 26:1991–1996CrossRefPubMedGoogle Scholar
  3. Callaway JC, Airaksinen MM, McKenna DJ, Brito GS, Grob CS (1994) Platelet serotonin uptake sites increased in drinkers of ayahuasca. Psychopharmacology (Berl) 116:385–387CrossRefGoogle Scholar
  4. Callaway JC, McKenna DJ, Grob CS, Brito GS, Raymon LP, Poland RE, Andrade EN, Andrade EO, Mash DC (1999) Pharmacokinetics of Hoasca alkaloids in healthy humans. J Ethnopharmacol 65:243–256CrossRefPubMedGoogle Scholar
  5. Check E (2004) Psychedelic drugs: the ups and downs of ecstasy. Nature 429:126–128CrossRefPubMedGoogle Scholar
  6. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666PubMedGoogle Scholar
  7. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13:500–505CrossRefPubMedGoogle Scholar
  8. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195CrossRefPubMedGoogle Scholar
  9. Damasio AR (2003) Looking for Spinoza: joy, sorrow, and the feeling brain. Harcourt, Orlando, FLGoogle Scholar
  10. Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, Hichwa RD (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3:1049–1056CrossRefPubMedGoogle Scholar
  11. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118:279–306CrossRefPubMedGoogle Scholar
  12. Dobkin de Rios M (1984) Visionary vine: hallucinogenic healing in the Peruvian Amazon. Waveland, Prospect Heights, ILGoogle Scholar
  13. Gouzoulis-Mayfrank E, Schreckenberger M, Sabri O, Arning C, Thelen B, Spitzer M, Kovar KA, Hermle L, Büll U, Sass H (1999) Neurometabolic effects of psilocybin, 3,4-methylenedioxyethylamphetamine (MDE) and d-methamphetamine in healthy volunteers. A double-blind, placebo-controlled PET study with [18F]FDG. Neuropsychopharmacology 20:565–581CrossRefPubMedGoogle Scholar
  14. Greenhouse L (2005) Supreme court to hear case of dispute over religious group’s use of banned drug. The New York Times (April 19), p 15Google Scholar
  15. Grob CS, McKenna DJ, Callaway JC, Brito GS, Neves ES, Oberlaender G, Saide OL, Labigalini E, Tacla C, Miranda CT, Strassman RJ, Boone KB (1996) Human psychopharmacology of hoasca, a plant hallucinogen used in ritual context in Brazil. J Nerv Ment Dis 184:86–94CrossRefPubMedGoogle Scholar
  16. Halpern JH (2004) Hallucinogens and dissociative agents naturally growing in the United States. Pharmacol Ther 102:131–138CrossRefPubMedGoogle Scholar
  17. Hamann S (2003) Nosing in on the emotional brain. Nat Neurosci 6:106–108CrossRefPubMedGoogle Scholar
  18. Hermle L, Fünfgeld M, Oepen G, Botsch H, Borchardt D, Gouzoulis E, Fehrenbach RA, Spitzer M (1992) Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: experimental psychosis as a tool for psychiatric research. Biol Psychiatry 32:976–991CrossRefPubMedGoogle Scholar
  19. Kotler S (2005) Psychedelics in rehab. Psychology Today (Mar/Apr)Google Scholar
  20. Labate B, Araújo W (2002) O Uso Ritual da Ayahuasca. Mercado de Letras, Sao PauloGoogle Scholar
  21. Lamas X, Farré M, Llorente M, Camí J (1994) Spanish version of the 49-item short form of the Addiction Research Center Inventory. Drug Alcohol Depend 35:203–209CrossRefPubMedGoogle Scholar
  22. Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, McGarvey M, Quinn BT, Dusek JA, Benson H, Rauch SL, Moore CI, Fischl B (2005) Meditation experience is associated with increased cortical thickness. Neuroreport 16:1893–1897CrossRefPubMedGoogle Scholar
  23. Martin WR, Sloan JW, Sapira JD, Jasinski DR (1971) Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther 12:245–258PubMedGoogle Scholar
  24. McKenna DJ (2004) Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther 102:111–129CrossRefPubMedGoogle Scholar
  25. McKenna DJ, Towers GH, Abbott F (1984) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and beta-carboline constituents of ayahuasca. J Ethnopharmacol 10:195–223CrossRefPubMedGoogle Scholar
  26. McKenna DJ, Repke DB, Lo L, Peroutka SJ (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29:193–198CrossRefPubMedGoogle Scholar
  27. Melton L (2004) Dream drug or demon brew. New Sci 182(2453):42–43Google Scholar
  28. Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424CrossRefPubMedGoogle Scholar
  29. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331–348CrossRefPubMedGoogle Scholar
  30. Pierce PA, Peroutka SJ (1989) Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacology (Berl) 97:118–122CrossRefGoogle Scholar
  31. Rabin RA, Regina M, Doat M, Winter JC (2002) 5-HT2A receptor-stimulated phosphoinositide hydrolysis in the stimulus effects of hallucinogens. Pharmacol Biochem Behav 72:29–37CrossRefPubMedGoogle Scholar
  32. Reichel-Dolmatoff G (1990) The cultural context of an aboriginal hallucinogen: Banisteriopsis caapi. In: Furst P (ed) Flesh of the Gods: the ritual use of hallucinogens. Waveland, Prospect Heights, IL, pp 84–113Google Scholar
  33. Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ, Friston KJ, Yun LS, Chen K (1997) Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 154:918–925PubMedGoogle Scholar
  34. Riba J, Rodriguez-Fornells A, Strassman RJ, Barbanoj MJ (2001a) Psychometric assessment of the hallucinogen rating scale. Drug Alcohol Depend 62:215–223CrossRefPubMedGoogle Scholar
  35. Riba J, Rodriguez-Fornells A, Urbano G, Morte A, Antonijoan R, Montero M, Callaway JC, Barbanoj MJ (2001b) Subjective effects and tolerability of the South American psychoactive beverage Ayahuasca in healthy volunteers. Psychopharmacology (Berl) 154:85–95CrossRefGoogle Scholar
  36. Riba J, Valle M, Urbano G, Yritia M, Morte A, Barbanoj MJ (2003) Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J Pharmacol Exp Ther 306:73–83CrossRefPubMedGoogle Scholar
  37. Salak K (2004) The vision seekers. The New York Times (September 12)Google Scholar
  38. Schultes RE, Hofmann A (1980) The botany and chemistry of hallucinogens. Thomas, Springfield, ILGoogle Scholar
  39. Schultes RE, Hofmann A (1987) Plants of the gods: origins of hallucinogenic use. A. van der Marck Editions, New YorkGoogle Scholar
  40. Spruce R (1908) Notes of a botanist on the Amazon and Andes. Macmillan, LondonGoogle Scholar
  41. Strassman RJ, Qualls CR (1994) Dose–response study of N,N-dimethyltryptamine in humans. I. Neuroendocrine, autonomic and cardiovascular effects. Arch Gen Psychiatry 51:85–97PubMedGoogle Scholar
  42. Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994) Dose–response study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51:98–108PubMedGoogle Scholar
  43. Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology (Berl) 94:213–216CrossRefGoogle Scholar
  44. Villavicencio M (1858) Geografía de la República del Ecudador. Craighead, New YorkGoogle Scholar
  45. Vollenweider FX, Leenders KL, Øye I, Hell D, Angst J (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7:25–38CrossRefPubMedGoogle Scholar
  46. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via serotonin-2 agonist action. Neuroreport 9:3897–3902CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jordi Riba
    • 1
    • 2
    Email author
  • Sergio Romero
    • 1
    • 2
    • 4
  • Eva Grasa
    • 1
    • 2
  • Esther Mena
    • 3
  • Ignasi Carrió
    • 3
  • Manel J. Barbanoj
    • 1
    • 2
  1. 1.Centre d’Investigació de Medicaments, Institut de Recerca, Servei de Farmacologia ClínicaHospital de la Santa Creu i Sant PauBarcelonaSpain
  2. 2.Departament de Farmacologia i TerapèuticaUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Servei de Medicina NuclearHospital de la Santa Creu i Sant PauBarcelonaSpain
  4. 4.Departament ESAII, Centre de Recerca en Enginyeria BiomèdicaUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations