, Volume 180, Issue 4, pp 595–606 | Cite as

GABA-benzodiazepine receptor function in alcohol dependence: a combined 11C-flumazenil PET and pharmacodynamic study

  • A. R. Lingford-Hughes
  • S. J. Wilson
  • V. J. Cunningham
  • A. Feeney
  • B. Stevenson
  • D. J. Brooks
  • D. J. Nutt
Original Investigation



Gamma-aminobutyric acid (GABA)-benzodiazepine receptor function is hypothesised to be reduced in alcohol dependence.


We used positron emission tomography (PET) with [11C]flumazenil, a non-selective tracer for brain GABA-benzodiazepine (GABA-BDZ) receptor binding, to determine in vivo the relationship between BDZ receptor occupancy by an agonist, midazolam, and its functional effects.


Abstinent male alcohol dependent subjects underwent [11C]flumazenil PET to measure occupancy of BDZ receptors by midazolam whilst recording its pharmacodynamic effects on behavioural and physiological measures. Rate constants describing the exchange of [11C]flumazenil between the plasma and brain compartments were derived from time activity curves.


A 50% reduction in electroencephalography (EEG)-measured sleep time was seen in the alcohol dependent group despite the same degree of occupancy by midazolam as seen in the control group. The effects of midazolam on other measures of benzodiazepine receptor function, increasing EEG beta1 power and slowing of saccadic eye movements, were similar in the two groups. No differences in midazolam or flumazenil metabolism were found between the groups.


In summary, our study suggests that alcohol dependence in man is associated with a reduced EEG sleep response to the benzodiazepine agonist, midazolam, which is not explained by reduced BDZ receptor occupancy, and is consistent with reduced sensitivity in this measure of GABA-BDZ receptor function in alcohol dependence. The lack of change in other functional measures may reflect a differential involvement of particular subtypes of the GABA-BDZ receptor.


PET Flumazenil Alcoholism GABA-benzodiazepine receptor EEG Saccadic eye movements 



We are grateful to Dr. Mike Franklin, Oxford for measurement of midazolam, all staff at Hammersmith Imanet Ltd. (formerly MRC Cyclotron Unit) but particularly Safiye Osman, Jo Holmes, and Andy Blythe, Mr. Lindsay Taylor, University of Bristol and all staff and patients at the Robert Smith Unit, Bristol and ACAD, Weston-super-Mare. This study was funded by an MRC Programme Grant, G9515859.


  1. Abi-Dargham A, Krystal JH, Anjilvel S, Scanley BE, Zoghbi S, Baldwin RM, Rajeevan N, Ellis S, Petrakis IL, Seibyl JP, Charney DS, Laruelle M, Innis RB (1998) Alterations of benzodiazepine receptors in type II alcoholic subjects measured with SPECT and (123I)iomazenil. Am J Psychiatry 155(11):1550–1555PubMedGoogle Scholar
  2. Adams KM, Gilman S, Koeppe RA, Kluin KJ, Brunberg JA, Dede D, Berent S, Kroll PD (1993) Neuropsychological deficits are correlated with frontal hypometabolism in positron emission tomography studies of older alcoholic patients. Alcohol Clin Exp Res 17(2):205–210PubMedCrossRefGoogle Scholar
  3. Ball DM, Glue P, Wilson S, Nutt DJ (1991) Pharmacology of saccadic eye movements in man. 1. Effects of the benzodiazepine receptor ligands midazolam and flumazenil. Psychopharmacology 105:361–367PubMedCrossRefGoogle Scholar
  4. Bauer LO, Gross JB, Meyer RE, Greenblatt DJ (1997) Chronic alcohol abuse and the acute sedative and neurophysiologic effects of midazolam. Psychopharmacology 133(3):293–299CrossRefPubMedGoogle Scholar
  5. Beck AT, Brown G, Epstein N, Steer RA (1961) An inventory for measuring depression. Arch Gen Psychiatry 53:225–231Google Scholar
  6. Blednov YA, Jung S, Alva H, Wallace D, Rosahl T, Whiting PJ, Harris RA (2003) Deletion of the alpha1 or beta2 subunit of GABAA receptors reduces actions of alcohol and other drugs. J Pharmacol Exp Ther 304(1):30–36CrossRefPubMedGoogle Scholar
  7. Brower KJ (2001) Alcohol’s effects on sleep in alcoholics. Alcohol Res Health 25(2):110–125PubMedGoogle Scholar
  8. Bruce DL (1983) Alcoholism and anesthesia. Anesth Analg 62(1):84–96PubMedCrossRefGoogle Scholar
  9. Buck KJ, Harris RA (1990) Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol. J Pharmacol Exp Ther 253:713–719PubMedGoogle Scholar
  10. Ciraulo DA, Barnhill JG, Ciraulo AM, Sarid-Segal O, Knapp C, Greenblatt DJ, Shader R (1997) Alterations in pharmacodynamics of anxiolytics in abstinent alcoholic men: subjective responses, abuse liability, and electroencephalographic effects of alprazolam, diazepam, and buspirone. J Clin Pharmacol 37(1):64–73PubMedCrossRefGoogle Scholar
  11. Cowley DS, Roy-Byrne PP, Radant A, Hommer DW, Greenblatt DJ, Vitaliano PP, Godon C (1994) Eye movement effects of diazepam in sons of alcoholic fathers and male control subjects. Alcohol Clin Exp Res 18(2):324–332PubMedCrossRefGoogle Scholar
  12. Curran MA, Newman LM, Becker GL (1988) Barbiturate anesthesia and alcohol tolerance in a rat model. Anesth Analg 67(9):868–871PubMedCrossRefGoogle Scholar
  13. Currie SR, Clark S, Rimac S, Malhotra S (2003) Comprehensive assessment of insomnia in recovering alcoholics using daily sleep diaries and ambulatory monitoring. Alcohol Clin Exp Res 27(8):1262–1269CrossRefPubMedGoogle Scholar
  14. Devaud LL, Smith FD, Grayson DR, Morrow AL (1995) Chronic ethanol consumption differentially alters the expression of gamma-aminobutyric acidA receptor subunit mRNAs in rat cerebral cortex: competitive, quantitative reverse transcriptase-polymerase chain reaction analysis. Mol Pharmacol 48:861–868PubMedGoogle Scholar
  15. Dodd PR, Thomas GJ, Harper CG, Kril JJ (1992) Amino acid neurotransmitter receptor changes in cerebral cortex in alcoholism: effect of cirrhosis of the liver. J Neurochem 59(4):1506–1515PubMedCrossRefGoogle Scholar
  16. Domino EF, French J, Pohorecki R, Galus CF, Pandit SK (1989) Further observations on the effects of subhypnotic doses of midazolam in normal volunteers. Psychopharmacol Bull 25(3):460–465PubMedGoogle Scholar
  17. Doudet D, Hommer D, Higley JD, Andreason PJ, Moneman R, Suomi SJ, Linnoila M (1995) Cerebral glucose metabolism, CSF 5-HIAA levels, and aggressive behavior monkeys. Am J Psychiatry 152(12):1782–1787PubMedGoogle Scholar
  18. Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO, Crowe RR, Goate A, Hesselbrock V, Jones K, Kwon J, Li TK, Nurnberger JI Jr, O’Connor SJ, Reich T, Rice J, Schuckit MA, Porjesz B, Foroud T, Begleiter H (2004) Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74(4):705–714CrossRefPubMedGoogle Scholar
  19. Fassoulaki A, Farinotti R, Servin F, Desmonts JM (1993) Chronic alcoholism increases the induction dose of propofol in humans. Anesth Analg 77(3):553–556PubMedCrossRefGoogle Scholar
  20. Feshchenko VA, Veselis RA, Reinsel RA (1997) Comparison of the EEG effects of midazolam, thiopental, and propofol: the role of underlying oscillatory systems. Neuropsychobiology 35(4):211–220PubMedGoogle Scholar
  21. Freund G, Ballinger WE Jr (1988) Decrease of benzodiazepine receptors in frontal cortex of alcoholics. Alcohol 5(4):275–282CrossRefPubMedGoogle Scholar
  22. Gilman S, Koeppe RA, Adams K, Johnson-Grenne D, Junck L, Kliun KJ, Brunberg J, Martorello S, Lohman M (1996) Positron emission tomographic studies of cerebral benzodiazepine-receptor binding in chronic alcoholics. Ann Neurol 40(2):163–171CrossRefPubMedGoogle Scholar
  23. Grobin AC, Matthews DB, Devaud LL, Morrow AL (1998) The role of GABA(A) receptors in the acute and chronic effects of ethanol. Psychopharmacology 139(1–2):2–19CrossRefPubMedGoogle Scholar
  24. Hommer DW, Matsuo V, Wolkowitz O, Chrousos G, Greenblatt DJ, Weingartner H, Paul SM (1986) Benzodiazepine sensitivity in normal human subjects. Arch Gen Psychiatry 43(6):542–551PubMedGoogle Scholar
  25. Korpi ER, Uusi-Oukari M, Wegelius K, Casanova M, Zito M, Kleinman JE (1992) Cerebellar and frontal cortical benzodiazepine receptors in human alcoholics and chronically alcohol-drinking rats. Biol Psychiatry 31(8):774–786CrossRefPubMedGoogle Scholar
  26. Kugaya A, Sanacora G, Verhoeff NP, Fujita M, Mason GF, Seneca NM, Bozkurt A, Khan SA, Anand A, Degen K, Charney DS, Zoghbi SS, Baldwin RM, Seibyl JP, Innis RB (2003) Cerebral benzodiazepine receptors in depressed patients measured with (123I)iomazenil SPECT. Biol Psychiatry 54(8):792–799CrossRefPubMedGoogle Scholar
  27. Kumar S, Fleming RL, Morrow AL (2004) Ethanol regulation of gamma-aminobutyric acid A receptors: genomic and nongenomic mechanisms. Pharmacol Ther 101(3):211–226CrossRefPubMedGoogle Scholar
  28. Lassen NA, Bartenstein PA, Lammertsma AA, Prevett MC, Turton DR, Luthra SK, Osman S, Bloomfield PM, Jones T, Patsalos PN et al (1995) Benzodiazepine receptor quantification in vivo in humans using (11C)flumazenil and PET: application of the steady-state principle. J Cereb Blood Flow Metab 15(1):152–165PubMedGoogle Scholar
  29. Lee A, Lader M (1988) Tolerance and rebound during and after short-term administration of quazepam, triazolam and placebo to healthy volunteers. Int Clin Psychopharmacol 3:31–47PubMedCrossRefGoogle Scholar
  30. Lewohl JM, Crane DI, Dodd PR (1997) Expression of the alpha 1, alpha 2 and alpha 3 isoforms of the GABAA receptor in human alcoholic brain. Brain Res 751(1):102–112CrossRefPubMedGoogle Scholar
  31. Lewohl JM, Huygens F, Crane DI, Dodd PR (2001) GABA(A) receptor alpha-subunit proteins in human chronic alcoholics. J Neurochem 78(3):424–434CrossRefPubMedGoogle Scholar
  32. Lingford-Hughes AR, Acton PD, Gacinovic S, Suckling J, Busatto GF, Boddington SJ, Bullmore E, Woodruff PW, Costa DC, Pilowsky LS, Ell PJ, Marshall EJ, Kerwin RW (1998) Reduced levels of GABA-benzodiazepine receptor in alcohol dependency in the absence of grey matter atrophy. Br J Psychiatry 173:116–122PubMedCrossRefGoogle Scholar
  33. Lingford-Hughes A, Hume SP, Feeney A, Hirani E, Osman S, Cunningham VJ, Pike VW, Brooks DJ, Nutt DJ (2002) Imaging the GABA-benzodiazepine receptor subtype containing the alpha5-subunit in vivo with (11C)Ro15 4513 positron emission tomography. J Cereb Blood Flow Metab 22(7):878–889CrossRefPubMedGoogle Scholar
  34. Loft S, Jensen V, Rorsgaard S, Dyrberg V (1982) Influence of moderate alcohol intake on thiopental anesthesia. Acta Anaesthesiol Scand 26(1):22–26PubMedGoogle Scholar
  35. Loft S, Jensen V, Rorsgaard S (1983) Influence of moderate alcohol intake on wakening plasma thiopental concentration. Acta Anaesthesiol Scand 27(3):266–269PubMedGoogle Scholar
  36. Loh EW, Smith I, Murray R, McLaughlin M, McNulty S, Ball D (1999) Association between variants at the GABAAbeta2, GABAAalpha6 and GABAAgamma2 gene cluster and alcohol dependence in a Scottish population. Mol Psychiatry 4(6):539–544CrossRefPubMedGoogle Scholar
  37. Malizia AL, Gunn RN, Wilson SJ, Waters SH, Bloomfield PM, Cunningham VJ, Nutt DJ (1996) Benzodiazepine site pharmacokinetic/pharmacodynamic quantification in man: direct measurement of drug occupancy and effects on the human brain in vivo. Neuropharmacology 35(9–10):1483–1491CrossRefPubMedGoogle Scholar
  38. Mandema JW, Tuk B, van Steveninck AL, Breimer DD, Cohen AF, Danhof M (1992) Pharmacokinetic–pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther 51(6):715–728PubMedCrossRefGoogle Scholar
  39. Mhatre MC, Ticku MK (1992) Chronic ethanol administration alters gamma-aminobutyric acidA receptor gene expression. Mol Pharmacol 42(3):415–422PubMedGoogle Scholar
  40. Mitsuyama H, Little KY, Sieghart W, Devaud LL, Morrow AL (1998) GABA(A) receptor alpha1, alpha4, and beta3 subunit mRNA and protein expression in the frontal cortex of human alcoholics. Alcohol Clin Exp Res 22(4):815–822PubMedGoogle Scholar
  41. Mohler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol Exp Ther 300(1):2–8CrossRefPubMedGoogle Scholar
  42. Montpied P, Morrow AL, Karanian JW, Ginns EI, Martin BM, Paul SM (1991) Prolonged ethanol inhalation decreases gamma-aminobutyric acidA receptor alpha subunit mRNAs in the rat cerebral cortex. Mol Pharmacol 39(2):157–163PubMedGoogle Scholar
  43. Newman LM, Curran MA, Becker GL (1986) Effects of chronic alcohol intake on anesthetic responses to diazepam and thiopental in rats. Anesthesiology 65(2):196–200PubMedCrossRefGoogle Scholar
  44. Nicolas JM, Catafau AM, Estruch R, Lomena FJ, Salamero M, Herranz R, Monforte R, Cardenal C, Urbano-Marquez A (1993) Regional cerebral blood flow-SPECT in chronic alcoholism: relation to neuropsychological testing. J Nucl Med 34(9):1452–1459PubMedGoogle Scholar
  45. Nutt DJ (1999) Alcohol and the brain: pharmacological insights for psychiatrists. Br J Psychiatry 175:114–119PubMedGoogle Scholar
  46. Nutt DJ, Malizia AL (2001) New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 179:390–396CrossRefPubMedGoogle Scholar
  47. Pike VW, Halldin C, Crouzel C, Barre L, Nutt DJ, Osman S, Shah F, Turton DR, Waters SL (1993) Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites—current status. Nucl Med Biol 20(4):503–525CrossRefPubMedGoogle Scholar
  48. Rechtschaffen A, Kales A (1968) A manual of standarized terminology, techniques and scoring system for sleep stages in human subjects. US Government Printing Office, Washington, DCGoogle Scholar
  49. Robb RA, Hanson DP (1991) A software system for interactive and quantitative visualization of multidimensional biomedical images. Australas Phys Eng Sci Med 14:9–30PubMedGoogle Scholar
  50. Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, Gunn RN, Grasby PM, Cowen PJ (2000) Brain serotonin1A receptor binding measured by positron emission tomography with (11C)WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 57(2):174–180CrossRefPubMedGoogle Scholar
  51. Sarid-Segal O, Knapp CM, Ciraulo AM, Greenblatt DJ, Shader RI, Ciraulo DA (2000) Decreased EEG sensitivity to alprazolam in subjects with a parental history of alcoholism. J Clin Pharmacol 40(1):84–90CrossRefPubMedGoogle Scholar
  52. Spielberger CD (1983) Manual for state–trait anxiety inventory. Consulting Psychologists Press, Palo Alto, CAGoogle Scholar
  53. Spinks TJ, Jones T, Bailey DL, Townsend DW, Grootoonk S, Bloomfield PM, Gilardi MC, Casey ME, Sipe B, Reed J (1992) Physical performance of a positron tomograph for brain imaging with retractable septa. Phys Med Biol 37(8):1637–1655CrossRefPubMedGoogle Scholar
  54. Stockwell T, Murphy D, Hodgson R (1983) The severity of alcohol dependence questionnaire: its use, reliability and validity. Br J Addict 78(2):145–155PubMedGoogle Scholar
  55. Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986) Ethanol stimulates gamma-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci U S A 83(11):4071–4075PubMedCrossRefGoogle Scholar
  56. Swerdlow BN, Holley FO, Maitre PO, Stanski DR (1990) Chronic alcohol intake does not change thiopental anesthetic requirement, pharmacokinetics, or pharmacodynamics. Anesthesiology 72(3):455–461PubMedCrossRefGoogle Scholar
  57. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical Publisher, New York, 132ppGoogle Scholar
  58. Tran VT, Snyder SH, Major LF, Hawley RJ (1981) GABA receptors are increased in brains of alcoholics. Ann Neurol 9(3):289–292CrossRefPubMedGoogle Scholar
  59. Van Steveninck AL, Mandema JW, Tuk B, Van Dijk JG, Schoemaker HC, Danhof M, Cohen AF (1993) A comparison of the concentration–effect relationships of midazolam for EEG-derived parameters and saccadic peak velocity. Br J Clin Pharmacol 36(2):109–115PubMedGoogle Scholar
  60. Veselis RA, Reinsel RA, Beattie BJ, Mawlawi OR, Feshchenko VA, DiResta GR, Larson SM, Blasberg RG (1997) Midazolam changes cerebral blood flow in discrete brain regions: an H2(15)O positron emission tomography study. Anesthesiology 87(5):1106–1117CrossRefPubMedGoogle Scholar
  61. Videbaek C, Friberg L, Holm S, Wammen S, Foged C, Andersen JV, Dalgaard L, Lassen NA (1993) Benzodiazepine receptor equilibrium constants for flumazenil and midazolam determined in humans with the single photon emission computer tomography tracer (123I)iomazenil. Eur J Pharmacol 249(1):43–51CrossRefPubMedGoogle Scholar
  62. Volkow ND, Hitzemann R, Wang GJ, Fowler JS, Burr G, Pascani K, Dewey SL, Wolf AP (1992) Decreased brain metabolism in neurologically intact healthy alcoholics. Am J Psychiatry 149(8):1016–1022PubMedGoogle Scholar
  63. Volkow ND, Wang GJ, Hitzemann R, Fowler JS, Overall JE, Burr G, Wolf AP (1994) Recovery of brain glucose metabolism in detoxified alcoholics. Am J Psychiatry 151(2):178–183PubMedGoogle Scholar
  64. Volkow ND, Wang GJ, Begleiter H, Hitzemann R, Pappas N, Burr G, Pascani K, Wong C, Fowler JS, Wolf AP (1995) Regional brain metabolic response to lorazepam in subjects at risk for alcoholism. Alcohol Clin Exp Res 19(2):510–516PubMedCrossRefGoogle Scholar
  65. Volkow ND, Wang GJ, Overall JE, Hitzemann R, Fowler JS, Pappas N, Frecska E, Piscani K (1997) Regional brain metabolic response to lorazepam in alcoholics during early and late alcohol detoxification. Alcohol Clin Exp Res 21(7):1278–1284PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. R. Lingford-Hughes
    • 1
    • 2
  • S. J. Wilson
    • 1
  • V. J. Cunningham
    • 3
  • A. Feeney
    • 1
    • 2
  • B. Stevenson
    • 1
    • 2
    • 4
  • D. J. Brooks
    • 2
    • 3
  • D. J. Nutt
    • 1
  1. 1.Psychopharmacology UnitUniversity of BristolBristolUK
  2. 2.MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of MedicineImperial College School of MedicineLondonUK
  3. 3.Hammersmith Imanet Ltd.Hammersmith HospitalLondonUK
  4. 4.Community Drug TeamPaget HouseLeicesterUK

Personalised recommendations