Psychopharmacology

, Volume 179, Issue 1, pp 4–29

Ionotropic and metabotropic glutamate receptor structure and pharmacology

Review

Abstract

Rationale

l-Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS) and mediates its actions via activation of both ionotropic and metabotropic receptor families. The development of selective ligands, including competitive agonists and antagonists and positive and negative allosteric modulators, has enabled investigation of the functional roles of glutamate receptor family members.

Objective

In this review we describe the subunit structure and composition of the ionotropic and metabotropic glutamate receptors and discuss their pharmacology, particularly with respect to selective tools useful for investigation of their function in the CNS.

Results

A large number of ligands are now available that are selective either for glutamate receptor subfamilies or for particular receptor subtypes. Such ligands have enabled considerable advances in the elucidation of the physiological and pathophysiological roles of receptor family members. Furthermore, efficacy in animal models of neurological and psychiatric disorders has supported the progression of several glutamatergic ligands into clinical studies. These include ionotropic glutamate receptor antagonists, which have entered clinical trials for disorders including epilepsy and ischaemic stroke, α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor positive allosteric modulators which are under evaluation as cognitive enhancers, and metabotropic glutamate receptor 2 (mGluR2) agonists which are undergoing clinical evaluation as anxiolytics. Furthermore, preclinical studies have illustrated therapeutic potential for ligands selective for other receptor subtypes in various disorders. These include mGluR1 antagonists in pain, mGluR5 antagonists in anxiety, pain and drug abuse and mGluR5 positive allosteric modulators in schizophrenia.

Conclusions

Selective pharmacological tools have enabled the study of glutamate receptors. However, pharmacological coverage of the family is incomplete and considerable scope remains for the development of novel ligands, particularly those with in vivo utility, and for the their use together with existing tools for the further investigation of the roles of receptor family members in CNS function and as potentially novel therapeutics.

Keywords

NMDA receptor AMPA receptor Kainate receptor mGlu receptor mGluR Allosteric modulator 

References

  1. Ahmadian H, Nielsen B, Brauner-Osborne H, Johansen TN, Stensbol TB, Slok FA, Sekiyama N, Nakanishi S, Krogsgaard-Larsen P, Madsen U (1997) (S)-Homo-AMPA, a specific agonist at the mGlu6 subtype of metabotropic glutamic acid receptors. J Med Chem 40:3700–3705Google Scholar
  2. Alanine A, Bourson A, Buttelmann B, Gill R, Heitz MP, Mutel V, Pinard E, Trube G, Wyler R (2003) 1-Benzyloxy-4,5-dihydro-1H-imidazol-2-yl-amines, a novel class of NR1/2B subtype selective NMDA receptor antagonists. Bioorg Med Chem Lett 13:3155–3159Google Scholar
  3. Al-Hallaq RA, Jarabek BR, Fu Z, Vicini S, Wolfe BB, Yasuda RP (2002) Association of NR3A with the N-methyl-d-aspartate receptor NR1 and NR2 subunits. Mol Pharmacol 62:1119–1127Google Scholar
  4. Alt A, Weiss B, Ogden AM, Knauss JL, Oler J, Ho K, Large TH, Bleakman D (2004) Pharmacological characterization of glutamatergic agonists and antagonists at recombinant human homomeric and heteromeric kainate receptors in vitro. Neuropharmacology 46:793–806Google Scholar
  5. Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575Google Scholar
  6. Annoura H, Fukunaga A, Uesugi M, Tatsuoka T, Horikawa Y (1996) A novel class of antagonist for metabotropic glutamate receptors, 7-(hydroxyimino)cyclopropachromen-1a-carboxylates. Bioorg Med Chem Lett 6:763–766Google Scholar
  7. Anson LC, Chen PE, Wyllie DA, Colquhoun D, Schoepfer R (1998) Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 18:581–589PubMedGoogle Scholar
  8. Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brains Res Rev 29:83–120Google Scholar
  9. Arai AC, Kessler M, Rogers G, Lynch G (2000) Effects of the potent Ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466. Mol Pharmacol 58:802–813Google Scholar
  10. Arai AC, Xia Y-F, Rogers G, Lynch G, Kessler M (2002) Benzamide-type AMPA receptor modulators form two subfamilies with distinct modes of action. J Pharmacol Exp Ther 303:1075–1085Google Scholar
  11. Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28:165–181CrossRefPubMedGoogle Scholar
  12. Armstrong N, Sun Y, Chen GQ, Gouaux E (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395:913–917Google Scholar
  13. Auberson YP, Allgeier H, Bischoff S, Lingenhoehl K, Moretti R, Schmutz M (2002) 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg Med Chem Lett 12:1099–1102Google Scholar
  14. Baron BM, Harrison BL, Kehne JH, Schmidt CJ, van Giersbergen PL, White HS, Siegel BW, Senyah Y, McCloskey TC, Fadayel GM, Taylor VL, Murawsky MK, Nyce P, Salituro FG (1997) Pharmacological characterization of MDL 105,519, an NMDA receptor glycine site antagonist. Eur J Pharmacol 323:181–192Google Scholar
  15. Barton ME, White HS (2004) The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on kindling acquisition and expression. Epilepsy Res 59:1–12Google Scholar
  16. Benveniste M, Mayer ML (1991) Kinetic analysis of antagonist action at N-methyl-d-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 59:560–573Google Scholar
  17. Bhave G, Karim F, Carlton SM, Gereau RW (2001) Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci 4:417–423CrossRefPubMedGoogle Scholar
  18. Bhave G, Nadin BM, Brasier DJ, Glauner KS, Shah RD, Heinemann SF, Karim F, Gereau RW (2003) Membrane topology of a metabotropic glutamate receptor. J Biol Chem 278:30294–30301Google Scholar
  19. Birch PJ, Grossman CJ, Hayes AG (1988) 6,7-Dinitro-quinoxaline-2,3-dion and 6-nitro,7-cyano-quinoxaline-2,3-dion antagonise responses to NMDA in the rat spinal cord via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 156:177–180Google Scholar
  20. Bleakman D, Ballyk BA, Schoepp DD, Palmer AJ, Bath CP, Sharpe EF, Wooley ML, Bufton HW, Kamboj RK, Tarnawa I, Lodge D (1996) Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology 35:1689–1702Google Scholar
  21. Bleakman D, Gates MR, Ogden AM, Mackowiak M (2002) Kainate receptor agonists, antagonists and allosteric modulators. Curr Pharm Des 8:873–885Google Scholar
  22. Bormann J (1989) Memantine is a potent blocker of N-methyl-d-aspartate (NMDA) receptor channels. Eur J Pharmacol 166:591–592CrossRefGoogle Scholar
  23. Bortolotto ZA, Clarke VRJ, Delny CM, Parry MC, Smolders I, Vignes M, Ho KH, Miu P, Brinton BT, Fantaske R, Ogden A, Gates M, Ornstein PL, Lodge D, Bleakman D, Collingridge GL (1999) Kainate receptors are involved in synaptic plasticity. Nature 402:297–301Google Scholar
  24. Bowie D, Mayer ML (1995) Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15:453–462Google Scholar
  25. Brabet I, Parmentier M-L, De Colle C, Bockaert J, Acher F, Pin J-P (1998) Comparative effect of l-CCG-I, DCG-IV and γ-carboxy-l-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology 37:1043–1051Google Scholar
  26. Bräuner-Osborne H, Krogsgaard-Larsen P (1998) Pharmacology of (S)-homoquisqualic acid and (S)-2-amino-5-phosphopentanoic acid [(S)-AP5] at cloned metabotropic glutamate receptors. Br J Pharmacol 123:269–274Google Scholar
  27. Bristow LJ, Hutson PH, Kulagowski JJ, Leeson PD, Matheson S, Murray F, Rathbone D, Saywell KL, Thorn L, Watt AP, Tricklebank MD (1996) Anticonvulsant and behavioral profile of l-701,324, a potent, orally active antagonist at the glycine modulatory site on the N-methyl-d-aspartate receptor complex. J Pharmacol Exp Ther 279:492–501Google Scholar
  28. Brown JC, Tse HW, Skifter DA, Christie JM, Andaloro VJ, Kemp MC, Watkins JC, Jane DE, Monaghan DT (1998) [3H]Homoquinolinate binds to a subpopulation of NMDA receptors and to a novel binding site. J Neurochem 71:1464–1470Google Scholar
  29. Buttelmann B, Alanine A, Bourson A, Gill R, Heitz MP, Mutel V, Pinard E, Trube G, Wyler R (2003a) 2-(3,4-Dihydro-1H-isoquinolin-2yl)-pyridines as a novel class of NR1/2B subtype selective NMDA receptor antagonists. Bioorg Med Chem Lett 13:829–832Google Scholar
  30. Buttelmann B, Alanine A, Bourson A, Gill R, Heitz MP, Mutel V, Pinard E, Trube G, Wyler R (2003b) 4-(3,4-Dihydro-1H-isoquinolin-2yl)-pyridines and 4-(3,4-dihydro-1H-isoquinolin-2-yl)-quinolines as potent NR1/2B subtype selective NMDA receptor antagonists. Bioorg Med Chem Lett 13:1759–1762Google Scholar
  31. Campbell UC, Lalwani K, Hernandez L, Kinney GG, Conn PJ, Bristow LJ (2004) The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology 175:310–318Google Scholar
  32. Carroll FY, Stolle A, Beart PM, Voerste A, Brabet I, Mauler F, Joly C, Antonicek H, Bockaert J, Muller T, Pin J-P, Prezeau L (2001) BAY36-7620: a potent non-competitive mGlu1 receptor antagonist with inverse agonist activity. Mol Pharmacol 59:965–973Google Scholar
  33. Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907PubMedGoogle Scholar
  34. Cartmell J, Monn JA, Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviours in rats. J Pharmacol Exp Ther 291:161–170PubMedGoogle Scholar
  35. Chaperon F, Muller W, Auberson YP, Tricklebank MD, Neijt HC (2003) Substitution for PCP, disruption of prepulse inhibition and hyperactivity induced by N-methyl-d-aspartate receptor antagonists: preferential involvement of the NR2B rather than NR2A subunit. Behav Pharmacol 14:477–487Google Scholar
  36. Chappell AS, Sander JW, Brodie MJ, Chadwick D, Lledo A, Zhang D, Bjerke J, Kiesler GM, Arroyo S (2002) A crossover, add-on trial of talampanel in patients with refractory partial seizures. Neurology 58:1680–1682Google Scholar
  37. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798PubMedGoogle Scholar
  38. Chenard BL, Bordner J, Butler TW, Chambers LK, Collins MA, De Costa DL, Ducat MF, Dumont ML, Fox CB, Mena EE (1995) (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: a potent new neuroprotectant which blocks N-methyl-d-aspartate responses. J Med Chem 38:3138–3145Google Scholar
  39. Chenard BL, Menniti FS, Pagnozzi MJ, Shenk KD, Ewing FE, Welch WM (2000) Methaqualone derivatives are potent noncompetitive AMPA receptor antagonists. Bioorg Med Chem Lett 10:1203–1205Google Scholar
  40. Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, Corsi M, Orzi F, Conquet F (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 4:873–874CrossRefPubMedGoogle Scholar
  41. Christensen JK, Varming T, Ahring PK, Jorgensen TD, Nielson EO (2004) In vitro characterization of 5-carboxyl-2,4-di-benzamido-benzoic acid (NS3763), a noncompetitive antagonist of GLUK5 receptors. J Pharmacol Exp Ther 309:1003–1010Google Scholar
  42. Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 10:6498–6508Google Scholar
  43. Claiborne CF, McCauley JA, Libby BE, Curtis NR, Diggle HJ, Kulagowski JJ, Michelson SR, Anderson KD, Claremon DA, Freidinger RM, Bednar RA, Mosser SD, Gaul SL, Connolly TM, Condra CL, Bednar B, Stump GL, Lynch JJ, Macaulay A, Wafford KA, Koblan KS, Liverton NJ (2003) Orally efficacious NR2B-selective NMDA receptor antagonists. Bioorg Med Chem Lett 13:697–700Google Scholar
  44. Clark BP, Baker SR, Goldsworthy J, Harris JR, Kingston AE (1997) (+)-2-methyl-4-carboxyphenylglycine (LY367385) selectively antagonises metabotropic glutamate mGluR1 receptors. Bioorg Med Chem Lett 7:2777–2780Google Scholar
  45. Clarke VRJ, Ballyk BA, Hoo KH, Mandelzys A, Pellizzari A, Bath CP, Thomas J, Sharpe EF, Davies CH, Ornstein PL, Schoepp DD, Kamboj RK, Collingridge GL, Lodge D, Bleakman D (1997) A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389:599–603CrossRefPubMedGoogle Scholar
  46. Clements JD, Westbrook GL (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-d-aspartate receptor. Neuron 7:605–613Google Scholar
  47. Contractor A, Gereau RW, Green T, Heinemann SF (1998) Direct effects of metabotropic glutamate receptor compounds on native and recombinant N-methyl-d-aspartate receptors. Proc Natl Acad Sci U S A 95:8969–8974Google Scholar
  48. Contractor A, Swanson GT, Sailer A, O’Gorman S, Heinemann SF (2000) Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J Neurosci 20:8269–8278Google Scholar
  49. Contractor A, Sailer AW, Darstein M, Maron C, Xu J, Swanson GT, Heinemann SF (2003) Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2−/− mice. J Neurosci 23:422–429Google Scholar
  50. Cosford NDP, Roppe J, Tehrani L, Schweiger EJ, Seiders TJ, Chaudary A, Rao S, Varney MA (2003a) [3H]-Methoxymethyl-MTEP and [3H]-Methoxy-PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor. Bioorg Med Chem Lett 13:351–354CrossRefGoogle Scholar
  51. Cosford NDP, Tehrani L, Roppe J, Scheiger E, Smith ND, Anderson J, Bristow L, Brodkin J, Jiang X, McDonald I, Rao S, Washburn M, Varney MA (2003b) 3-[2-Methyl-1,3-thiazol-4yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 46:204–206CrossRefGoogle Scholar
  52. Curtis NR, Diggle HJ, Kulagowski JJ, London C, Grimwood S, Hutson PH, Murray F, Richards P, Macaulay A, Wafford KA (2003) Novel N1-(benzyl)cinnamamidine derived NR2B subtype-selective NMDA receptor antagonists. Bioorg Med Chem Lett 13:693–696Google Scholar
  53. Danysz W (2002) CX-516 cortex pharmaceuticals. Curr Opin Investig Drugs 3:1081–1088Google Scholar
  54. Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393:377–381CrossRefPubMedGoogle Scholar
  55. Dev KK, Nakanishi S, Henley JM (2001) Regulation of mglu7 receptors by proteins that interact with the intracellular C-terminus. Trends Pharmacol Sci 22:355–361Google Scholar
  56. Di Fabio R, Capelli AM, Conti N, Cugola A, Donati D, Feriani A, Gastaldi P, Gaviraghi G, Hewkin CT, Micheli F, Missio A, Mugnaini M, Pecunioso A, Quaglia AM, Ratti E, Rossi L, Tedesco G, Trist DG, Reggiani A (1997) Substituted indole-2-carboxylates as in vivo potent antagonists acting as the strychnine-insensitive glycine binding site. J Med Chem 40:841–850Google Scholar
  57. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61PubMedGoogle Scholar
  58. Doherty AJ, Palmer MJ, Henley JM, Collingridge GL, Jane DE (1997) (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but not mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacology 36:265–267CrossRefGoogle Scholar
  59. Donevan SD, McCabe RT (2000) Conantokin G is an NR2B-selective competitive antagonist of N-methyl-d-aspartate receptors. Mol Pharmacol 58:614–623Google Scholar
  60. Drejer J, Honore T (1988) New quinoxalinediones show potent antagonism of quisqualate responses in cultured mouse cortical neurons. Neurosci Lett 87:104–108Google Scholar
  61. Elting JW, Sulter GA, Kaste M, Lees KR, Diener HC, Hommel M, Versavel M, Teelken AW, De Keyser J (2002) AMPA antagonist ZK200775 in patients with acute ischemic stroke: possible glial cell toxicity detected by monitoring of S-100B serum levels. Stroke 33:2813–2838Google Scholar
  62. Escribano A, Ezquerra J, Pedregal C, Rubio A, Yruretagoyena B, Baker SR, Wright RA, Johnson BG, Schoepp DD (1998) (2S,4S)-2-Amino-4-(2,2-diphenylethyl)pentanedioic acid selective group 2 metabotropic glutamate receptor antagonist. Bioorg Med Chem Lett 8:765–770Google Scholar
  63. Everts I, Villmann C, Hollmann M (1997) N-glycosylation is not a prerequisite for glutamate receptor function but is essential for lectin modulation. Mol Pharmacol 52:861–873Google Scholar
  64. Farlow MR (2004) NMDA receptor antagonists. A new therapeutic approach for Alzheimer’s disease. Geriatrics 59:22–27Google Scholar
  65. Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25:351–360PubMedGoogle Scholar
  66. Feng B, Tse HW, Skifter DA, Morley R, Jane DE, Monaghan DT (2004) Structure–activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid. Br J Pharmacol 141:508–516Google Scholar
  67. Finlayson K, Witchel HJ, McCulloch J, Sharkey J (2004) Acquired QT interval prolongation and HERG: implications for drug discovery and development. Eur J Pharmacol 500:129–142Google Scholar
  68. Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25-6981, a highly potent and selective blocker of N-methyl-d- aspartate receptors containing the NR2B subunit: characterization in vitro. J Pharmacol Exp Ther 283:1285–1292Google Scholar
  69. Gallyas F, Ball SM, Molnar E (2003) Assembly and cell surface expression of KA-2 subunit-containing kainate receptors. J Neurochem 86:1414–1427Google Scholar
  70. Gasparini F, Bruno V, Battaglia G, Lukic T, Leonhardt T, Inderbitzin W, Laurie D, Sommer B, Varney MA, Hess SD, Johnson EC, Kuhn R, Urwyler S, Sauer D, Portet C, Schmutz M, Nicoletti F, Flor PJ (1999a) (R,S)-4-Phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsant and neuroprotective in vivo. J Pharmacol Exp Ther 290:1678–1687Google Scholar
  71. Gasparini F, Lingenhohl K, Stoehr N, Flor PJ, Heinrich M, Vranesic I, Biollaz M, Allgeier H, Heckendorn R, Urwyler S, Varney MA, Johnson EC, Hess SD, Rao SP, Sacaan AI, Santori EM, Velicelebi G, Kuhn R (1999b) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38:1493–1503Google Scholar
  72. Gatti S, Knoflach F, Kew JNC, Adam G, Goetschi E, Porter R, Wichmann J, Woltering T, Kemp JA, Mutel V (2001) 8-Arylethynyl-1,3-dihrdro-benzo[b][1,4]diazepin-2-one derivatives are potent non-competitive metabotropic glutamate receptor 2/3 antagonists. Soc Neurosci Abstr 705.10Google Scholar
  73. Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204CrossRefPubMedGoogle Scholar
  74. Gill R, Hargreaves RJ, Kemp JA (1995) The neuroprotective effect of the glycine site antagonist 3R-(+)-cis-4-methyl-HA966 (l-687,414) in a rat model of focal ischaemia. J Cereb Blood Flow Metab 15:197–204Google Scholar
  75. Gill R, Alanine A, Bourson A, Buttelmann B, Fischer G, Heitz MP, Kew JN, Levet-Trafit B, Lorez HP, Malherbe P, Miss MT, Mutel V, Pinard E, Roever S, Schmitt M, Trube G, Wybrecht R, Wyler R, Kemp JA (2002) Pharmacological characterization of Ro 63-1908 (1-[2-(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-ol), a novel subtype-selective N-methyl-d-aspartate antagonist. J Pharmacol Exp Ther 302:940–948Google Scholar
  76. Goudet C, Gaven F, Kniazeff J, Vol C, Liu J, Cohen-Gonsaud M, Acher F, Prezeau L, Pin JP (2004) Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proc Natl Acad Sci U S A 101:378–383Google Scholar
  77. Grillon C, Cordova J, Levine LR, Morgan CA (2003) Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology 168:446–454CrossRefPubMedGoogle Scholar
  78. Grimwood S, Wafford KA, Macaulay A, Hutson PH (2002) N-Methyl-d-aspartate receptor subtype-selectivity of homoquinolinate: an electrophysiological and radioligand binding study using both native and recombinant receptors. J Neurochem 82:794–800Google Scholar
  79. Harvey SC, Skolnick P (1999) Polyamine-like actions of aminoglycosides at recombinant N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 291:285–291Google Scholar
  80. Hayashi Y, Sekiyama N, Nakanishi S, Jane DE, Sunter DC, Birse EF, Udvarhelyi PM, Watkins JC (1994) Analysis of agonist and antagonist activities of phenylglycine derivatives for different cloned metabotropic glutamate receptor subtypes. J Neurosci 14:3370–3377Google Scholar
  81. Heidbreder CA, Bianchi M, Lacroix LP, Faedo S, Perdona E, Remelli R, Cavanni P, Crespi F (2003) Evidence that the metabotropic glutamate receptor 5 antagonist MPEP may act as an inhibitor of the norepinephrine transporter in vitro and in vivo. Synapse 50:269–276PubMedGoogle Scholar
  82. Hennegriff M, Aria A, Kessler M, Vaderklish P, Mutneja MS, Rogers G, Neve RL, Lynch G (1997) Stable expression of recombinant AMPA receptor subunits: binding affinities and effects of allosteric modulators. J Neurochem 68:2424–2434Google Scholar
  83. Henry SA, Lehmann-Masten V, Gasparini F, Geyer MA, Markou A (2002) The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology 43:1199–1209Google Scholar
  84. Hermans E, Nahorski SR, Challis RAJ (1998) Reversible and non-competitive antagonist profile of CPCCOEt at the human type 1a metabotropic glutamate receptor. Neuropharmacology 37:1645–1647Google Scholar
  85. Higgins GA, Ballard TM, Kew JNC, Richards JG, Kemp JA, Adam G, Woltering T, Nakanishi S, Mutel V (2004) Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. Neuropharmacology 46:907–917Google Scholar
  86. Hirai H, Kirsch J, Laube B, Betz H, Kuhse J (1996) The glycine binding site of the N-methyl-d-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc Natl Acad Sci U S A 93:6031–6036Google Scholar
  87. Huang D, Poon SF, Chapman DF, Chung J, Cramer M, Reger TS, Roppe JR, Thehrani L, Cosford NDP, Smith ND (2004) 2-(2-[3-(Pyridin-3-yloxy)phenyl]-2H-tetrazol-5-yl) pyridine: a highly potent, orally active, metabotropic glutamate subtype 5 (mGlu5) receptor antagonist. Bioorg Med Chem Lett 14:5473–5476Google Scholar
  88. Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoue Y, Mishina M (1992) Cloning and expression of the epsilon 4 subunit of the NMDA receptor channel. FEBS Lett 313:34–38Google Scholar
  89. Isa T, Itazawa S, Iino M, Tsuzuki K, Ozawa S (1996) Distribution of neurones expressing inwardly rectifying and Ca(2+)-permeable AMPA receptors in rat hippocampal slices. J Physiol 491:719–733Google Scholar
  90. Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M (1993) Molecular characterization of the family of the N-methyl-d-aspartate receptor subunits. J Biol Chem 268:2836–2843Google Scholar
  91. Ito I, Tanabe S, Kohda A, Sugiyama H (1990) Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J Physiol 424:533–543Google Scholar
  92. Jane DE, Olverman HJ, Watkins JC (1994) Agonists and competitive antagonists: structure–activity and molecular modelling studies. In: Collingridge GL, Watkins JC (eds) The NMDA receptor. Oxford University Press, New York, p 31Google Scholar
  93. Jang MK, Mierke DF, Russek SJ, Farb DH (2004) A steroid modulatory domain on NR2B controls N-methyl-d-aspartate receptor proton sensitivity. Proc Natl Acad Sci U S A 101:8198–8203Google Scholar
  94. Jingami H, Nakanishi S, Morikawa K (2003) Structure of the metabotropic glutamate receptor. Curr Opin Neurobiol 13:271–278Google Scholar
  95. Johnson MP, Baez M, Jagdmann GE, Britton TC, Large TH, Callagaro DO, Tizzano JP, Monn JA, Schoepp DD (2003) Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-Methoxyphenoxy)phenyl)-N-(2,2,2-trifluroethylsulfonyl)prid-3-ylmethyl-amine. J Med Chem 46:3189–3192Google Scholar
  96. Kemp JA, Kew JN (1998) NMDA receptor antagonists. In: Leff P (ed) Receptor-based drug design. Marcel Dekker, New York, pp 297–321Google Scholar
  97. Kemp JA, Leeson P (1993) The glycine site of the NMDA receptor—five years on. TIPS 14:20–25Google Scholar
  98. Kemp JA, McKernan RM (2002) NMDA receptor pathways as drug targets. Nat Neurosci 5:1039–1042Google Scholar
  99. Kerchner GA, Wilding TJ, Huettner JE, Zhuo M (2002) Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn. J Neurosci 22:8010–8017Google Scholar
  100. Kew JN, Kemp JA (1998) An allosteric interaction between the NMDA receptor polyamine and ifenprodil sites in rat cultured cortical neurones. J Physiol 512:17–28Google Scholar
  101. Kew JN, Richards JG, Mutel V, Kemp JA (1998a) Developmental changes in NMDA receptor glycine affinity and ifenprodil sensitivity reveal three distinct populations of NMDA receptors in individual rat cortical neurons. J Neurosci 18:1935–1943Google Scholar
  102. Kew JN, Trube G, Kemp JA (1998b) State-dependent NMDA receptor antagonism by Ro 8-4304, a novel NR2B selective, non-competitive, voltage-independent antagonist. Br J Pharmacol 123:463–472Google Scholar
  103. Kew JN, Koester A, Moreau JL, Jenck F, Ouagazzal AM, Mutel V, Richards JG, Trube G, Fischer G, Montkowski A, Hundt W, Reinscheid RK, Pauly-Evers M, Kemp JA, Bluethmann H (2000) Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. J Neurosci 20:4037–4049PubMedGoogle Scholar
  104. Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology 37:1–12Google Scholar
  105. Kingston AE, Griffey K, Johnson MP, Chamberlain M-J, Kelly G, Tomlinson R, Wright RA, Johnson BG, Schoepp DD, Harris JR, Clark BP, Baker RS, Tizzano JP (2002) Inhibition of group I metabotropic glutamate receptor responses in vivo in rats by a new generation of carboxyphenylglycine-like amino acid antagonists. Neurosci Lett 330:127–130Google Scholar
  106. Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ (2003) Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 306:116–123CrossRefGoogle Scholar
  107. Kloda A, Clements JD, Lewis RJ, Adams DJ (2004) Adenosine triphosphate acts as both a competitive antagonist and a positive allosteric modulator at recombinant N-methyl-d-aspartate receptors. Mol Pharmacol 65:1386–1396Google Scholar
  108. Kniazeff J, Bessis AS, Maurel D, Ansanay H, Prezeau L, Pin J-P (2004) Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 8:706–713Google Scholar
  109. Knoflach F, Mutel V, Jolidon S, Kew JNC, Malherbe P, Vieira E, Wichmann J, Kemp JA (2001) Positive allosteric modulators of metabotropic glutamate 1 receptor: characterisation, mechanism of action, and binding site. Proc Natl Acad Sci U S A 98:13402–13407Google Scholar
  110. Kohara A, Okada M, Tsutsumi R, Ohno K, Takahashi M, Shimizu-Sasamata M, Shishikura J, Inami H, Sakamoto S, Yamaguchi T (1998) In-vitro characterization of YM872, a selective, potent and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist. J Pharm Pharmacol 50:795–801Google Scholar
  111. Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407:971–977Google Scholar
  112. Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12:1291–1300Google Scholar
  113. Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M (1992) Molecular diversity of the NMDA receptor channel. Nature 358:36–41CrossRefPubMedGoogle Scholar
  114. Langan YM, Lucas R, Jewell H, Toublanc N, Schaefer H, Sander JWAS, Patsalos PN (2003) Talampanel, a new antiepileptic drug: single- and multiple-dose pharmacokinetics and initial 1-week experience in patients with chronic intractable epilepsy. Epilepsia 44:46–53Google Scholar
  115. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18:493–503CrossRefPubMedGoogle Scholar
  116. Lavreysen H, Janssen C, Bischoff F, Langlois X, Leysen JE, Lesage ASJ (2003) [3H]R214127: a novel high-affinity radioligand for the mGlu1 receptor reveals a common binding site shared by multiple allosteric antagonists. Mol Pharmacol 63:1082–1093CrossRefGoogle Scholar
  117. Lazzaro JT, Paternain AV, Lerma J, Chenard BL, Ewing FE, Huang J, Welch WM, Ganong AH, Menniti FS (2002) Functional characterisation of CP-465,022, a selective, noncompetitive AMPA receptor antagonist. Neuropharmacology 42:143–153Google Scholar
  118. Leeson PD, Iversen LL (1994) The glycine site on the NMDA receptor: structure–activity relationships and therapeutic potential. J Med Chem 37:4053–4067Google Scholar
  119. Lerma J, Paternain AV, Rodriguez-Moreno A, Lopez-Garcia JC (2001) Molecular physiology of kainate receptors. Physiol Rev 81:971–998Google Scholar
  120. Levine LR, Gaydos B, Sheehan D, Goddard A, Feighner J, Potter WZ, Schoepp DD (2001) The mGlu2/3 receptor agonist, LY354740, reduces panic anxiety induced by CO2 challenge in patients diagnosed with panic disorder. Neuropharmacology 43:294Google Scholar
  121. Linden A-M, Yu H, Zarrinmayeh H, Wheeler WJ, Skolnick P (2001) Binding of an AMPA receptor potentiator ([3H]LY395153) to native and recombinant AMPA receptors. Neuropharmacology 40:1010–1018Google Scholar
  122. Lindsley CW, Wisnoski DD, Leister WH, O’brien JA, Lemaire W, Williams DL Jr, Burno M, Sur C, Kinney GG, Pettibone DJ, Tiller PR, Smith S, Duggan ME, Hartman GD, Conn PJ, Huff JR (2004) Discovery of positive allosteric modulators for the metabotropic glutamate receptor subtype 5 from a series of N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamides that potentiate receptor function in vivo. J Med Chem 47:5825–5828Google Scholar
  123. Litchig S, Gasparini F, Rueegg D, Stoehr N, Flor PJ, Vranesic I, Prezeau L, Pin J-P, Thomsen C, Kuhn R (1999) CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signalling without affecting glutamate binding. Mol Pharmacol 55:453–461Google Scholar
  124. Liu SJ, Cull-Candy SG (2002) Activity-dependent change in AMPA receptor properties in cerebellar stellate cells. J Neurosci 22:3881–3889Google Scholar
  125. Liu QS, Xu Q, Arcuino G, Kang J, Nedergaard M (2004) Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad Sci U S A 101:3172–3177Google Scholar
  126. Lynch G (2004) AMPA receptor modulators as cognitive enhancers. Curr Opin Pharmacol 4:4–11CrossRefGoogle Scholar
  127. Mahanty NK, Sah P (1998) Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394:683–687Google Scholar
  128. Maj M, Bruno V, Dragic Z, Yamamoto R, Battaglia G, Inderbitzin W, Stoehr N, Stein T, Gasparini F, Vranesic I, Kuhn R, Nicoletti F, Flor PJ (2003) (−)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology 45:895–906Google Scholar
  129. Malayev A, Gibbs TT, Farb DH (2002) Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br J Pharmacol 135:901–909Google Scholar
  130. Malherbe P, Knoflach F, Broger C, Ohresser S, Kratzeisen C, Adam G, Stadler H, Kemp JA, Mutel V (2001) Identification of essential residues involved in the glutamate binding pocket of the group II metabotropic glutamate receptor. Mol Pharmacol 60:944–954Google Scholar
  131. Malherbe P, Kratochwil N, Knoflach F, Zenner M-T, Kew JNC, Kratzeisen C, Maerki HP, Adam G, Mutel V (2003a) Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, noncompetitive antagonist of the metabotropic glutamate 1 receptor. J Biol Chem 278:8340–8347Google Scholar
  132. Malherbe P, Kratochwil N, Zenner M-T, Piussi J, Diener C, Kratzeisen C, Fischer C, Porter RHP (2003b) Mutational analysis and molecular modeling of the binding site of the metabotropic glutamate 5 receptor negative modulator 2-Methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol 64:823–832Google Scholar
  133. Malherbe P, Mutel V, Broger C, Perin-Dureau F, Kemp JA, Neyton J, Paoletti P, Kew JN (2003c) Identification of critical residues in the amino terminal domain of the human NR2B subunit involved in the RO 25-6981 binding pocket. J Pharmacol Exp Ther 307:897–905Google Scholar
  134. Marino MJ, Conn PJ (2002) Direct and indirect modulation of the N-methyl d-aspartate receptor. Curr Drug Target CNS Neurol Disord 1:1–16Google Scholar
  135. Marino MJ, Williams DL, O’Brien JA, Valenti O, McDonald TP, Clements MK, Wang R, DiLella AG, Hess JF, Kinney GG, Conn PJ (2003) Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci U S A 100:13668–13763Google Scholar
  136. Masuko T, Kuno T, Kashiwagi K, Kusama T, Williams K, Igarashi K (1999) Stimulatory and inhibitory properties of aminoglycoside antibiotics at N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 290:1026–1033Google Scholar
  137. Mathiesen JM, Svendsen N, Brauner-Osborne H, Thomsen C, Ramirez MT (2003) Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP. Br J Pharmacol 138:1026–1030Google Scholar
  138. Matsuda K, Kamiya Y, Matsuda S, Yuzaki M (2002) Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Mol Brain Res 100:43–52CrossRefPubMedGoogle Scholar
  139. Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161–181Google Scholar
  140. McBain CJ, Mayer ML (1994) N-Methyl-d-aspartic acid receptor structure and function. Physiol Rev 74:723–760PubMedGoogle Scholar
  141. McCauley JA, Theberge CR, Romano JJ, Billings SB, Anderson KD, Claremon DA, Freidinger RM, Bednar RA, Mosser SD, Gaul SL, Connolly TM, Condra CL, Xia M, Cunningham ME, Bednar B, Stump GL, Lynch JJ, Macaulay A, Wafford KA, Koblan KS, Liverton NJ 2004 NR2B-selective N-methyl-d-aspartate antagonists: synthesis and evaluation of 5-substituted benzimidazoles. J Med Chem 47:2089–2096Google Scholar
  142. Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74CrossRefPubMedGoogle Scholar
  143. Menniti FS, Chenard BL, Collins MB, Ducat MF, Elliott ML, Ewing FE, Huang JI, Kelly KA, Lazzaro JT, Pagnozzi MJ, Weeks JL, Welch WM, White WF (2000) Characterisation of the binding site for a novel class of noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonists. Mol Pharmacol 58:1310–1317Google Scholar
  144. Menniti FS, Buchan AM, Chenard BL, Critchett DJ, Ganong AH, Guanowsky V, Seymour PA, Welch WM (2003) CP-465,022, a selective noncompetitive AMPA receptor antagonist, blocks AMPA receptors but is not neuroprotective in vivo. Stroke 34:171–176Google Scholar
  145. Miu P, Jarvie KR, Radhakrishnan V, Gates MR, Ogden A, Ornstein PL, Zarrinmayeh H, Ho K, Peters D, Grabell J, Gupta A, Zimmerman DM, Bleakman D (2001) Novel AMPA receptor potentiators LY392098 and LY404187: effects on recombinant human AMPA receptors in vitro. Neuropharmacology 40:976–983Google Scholar
  146. Moldrich RX, Beart PM, Jane DE, Chapman AG, Meldrum BS (2001) Anticonvulsant activity of 3,4-decarboxyphenylglycines in DBA/2 mice. Neuropharmacology 40:732–735Google Scholar
  147. Monn JA, Valli MJ, Massey SM, Wright RA, Salhoff CR, Johnson BG, Howe T, Alt CA, Rhodes GA, Robey RL, Griffey KR, Tizzano JP, Kallman MJ, Helton DR, Schoepp DD (1997) Design, synthesis and pharmacological characterization of (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740): a potent, selective, and orally active group 2 metabotropic glutamate receptor agonist possessing anticonvulsant and anxiolytic properties. J Med Chem 40:528–537CrossRefPubMedGoogle Scholar
  148. Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch JL, Wright RA, Johnson BG, Andis SL, Kingston A, Tomlinson R, Lewis R, Griffey KR, Tizzano JP, Schoepp DD (1999) Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem 42:1027–1040Google Scholar
  149. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221PubMedGoogle Scholar
  150. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540Google Scholar
  151. More JCA, Nistico R, Dolman NP, Clarke VRJ, Alt AJ, Ogden AM, Buelens FP, Troop HM, Kelland EE, Pilato F, Bleakman D, Bortolotto ZA, Collingridge GL, Jane DE (2004) Characterisation of UBP296: a novel, potent and selective kainate receptor antagonist. Neuropharmacology 47:46–64Google Scholar
  152. Moroni F, Lombardi G, Thomsen C, Leonardi P, Attucci S, Peruginelli F, Torregrossa SA, Pellegrini-Giampietro DE, Luneia R, Pellicciari R (1997) Pharmacological characterization of 1-aminoindan-1,5-dicarboxylic acid, a potent mGluR1 antagonist. J Pharmacol Exp Ther 281:721–729PubMedGoogle Scholar
  153. Murray TK, Whalley K, Robinson CS, Ward MA, Hicks CA, Lodge D, Vandergriff JL, Baumgarger P, Siuda E, Gates M, Ogden AM, Skolnick P, Zimmerman DM, Nisenbaum ES, Bleakman D, O’Neill MJ (2003) LY503430, a novel α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 306:752–762CrossRefGoogle Scholar
  154. Nahum-Levy R, Fossom LH, Skolnick P, Benveniste M (1999) Putative partial agonist 1-aminocyclopropanecarboxylic acid acts concurrently as a glycine-site agonist and a glutamate-site antagonist at N-methyl-d-aspartate receptors. Mol Pharmacol 56:1207–1218Google Scholar
  155. Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1993) Molecular characterisation of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for l-2-amino-4-phosphonobutyrate. J Biol Chem 268:11868–11873Google Scholar
  156. Nakazato A, Kumagai T, Sakagami K, Yoshikawa R, Suzuki Y, Chaki S, Ito H, Taguchi T, Nakanishi S, Okuyama S (2000) Synthesis, SARs and pharmacological characterisation of 2-amino-3 or 6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives as potent, selective, and orally active group II metabotropic glutamate receptor agonists. J Med Chem 43:4893–4909Google Scholar
  157. Nishi M, Hinds H, Lu HP, Kawata M, Hayashi Y (2001) Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci 21:RC185Google Scholar
  158. O’Brien JA, Lemaire W, Chen T-B, Chang RSL, Jacobson MA, Ha SN, Lindsley CW, Schaffhauser HJ, Sur C, Pettibone DJ, Conn PJ, Williams DL (2003) A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol Pharmacol 64:731–740Google Scholar
  159. O’Brien JA, Lemaire W, Wittmann M, Jacobson MA, Ha SN, Wisnoski DD, Lindsley CW, Schaffhauser HJ, Rowe B, Sur C, Duggan ME, Pettibone DJ, Conn PJ, Williams DL (2004) A novel selective allosteric modulator potentiates the activity of native metabotropic glutamate receptor subtype 5 in rat forebrain. J Pharmacol Exp Ther 309:568–577Google Scholar
  160. Ohmori J, Sakamoto S, Kubota H, Shimizu-Sasamata M, Okada M, Kawasaki S, Hidaka K, Togami J, Furuya T, Murase K (1994) 6-(1H-Imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) and related compounds: structure–activity relationships for the AMPA-type non-NMDA receptor. J Med Chem 37:467–475Google Scholar
  161. Ohtani K, Tanaka H, Yoneda Y, Yasuda H, Ito A, Nagata R, Nakamura M (2002) In vitro and in vivo antagonistic activities of SM-31900 for the NMDA receptor glycine-binding site. Brain Res 944:165–173Google Scholar
  162. O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES (2004) AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Target CNS Neurol Disord 3:181–194Google Scholar
  163. Pagano A, Ruegg D, Litschig S, Stoehr N, Stierlin C, Heinrich M, Floersheim P, Prezeau L, Carroll F, Pin J-P, Cambria A, Vranesic I, Flor PJ, Gasparini F, Kuhn R (2000) The non-competitive antagonists 2-Methyl-6-(phenylethynyl)pyridine and 7-Hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J Biol Chem 275:33750–33758Google Scholar
  164. Paoletti P, Neyton J, Ascher P (1995) Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+. Neuron 15:1109–1120Google Scholar
  165. Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34:1239–1258Google Scholar
  166. Pedegral C, Collado I, Escribano A, Ezquerra J, Dominguez C, Mateo AI, Rubio A, Baker SR, Goldsworthy J, Kamboj RK, Ballyk BA, Hoo K, Bleakman D (2000) 4-Alkyl- and 4-cinnamylglutamic acid analogues are potent GluR5 kainate receptor agonists. J Med Chem 43:1958–1968Google Scholar
  167. Pelletier JC, Hesson DP, Jones KA, Costa A-M (1996) Substituted 1,2-dihydrophthalazines: potent, selective, and non-competitive inhibitors of the AMPA receptor. J Med Chem 39:343–346Google Scholar
  168. Pellicciari R, Luneia R, Costantino G, Marinozzi M, Natalini B, Jakobsen P, Kanstrup A, Lombardi G, Moroni F, Thomsen C (1995) 1-Aminoindan-1,5-dicarboxylic acid: a novel antagonist at phospholipase C-linked metabotropic glutamate receptors. J Med Chem 38:3717–3719Google Scholar
  169. Perin-Dureau F, Rachline J, Neyton J, Paoletti P (2002) Mapping the binding site of the neuroprotectant ifenprodil on NMDA receptors. J Neurosci 22:5955–5965Google Scholar
  170. Pin JP, Galvez T, Prezeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98:325–354Google Scholar
  171. Pinard E, Alanine A, Bourson A, Buttelmann B, Heitz M, Mutel V, Gill R, Trube G, Wyler R (2002) 4-Aminoquinolines as a novel class of NR1/2B subtype selective NMDA receptor antagonists. Bioorg Med Chem Lett 12:2615–2619Google Scholar
  172. Pinkerton AB, Vernier J-M, Schaffhauser H, Rowe BA, Campbell UC, Rodriguez DE, Lorrain DS, Baccei CS, Daggett LP, Bristow LJ (2004) Phenyl-tetrazolyl acetophenones: discovery of positive allosteric potentiators for the metabotropic glutamate 2 receptor. J Med Chem 47:4595–4599Google Scholar
  173. Poon SF, Eastman BW, Chapman DF, Chung J, Cramer M, Holtz G, Cosford ND, Smith ND (2004) 3-[3-Fluoro-5-(5-pyridin-2-yl-2H-tetrazol-2-yl)phenyl]-4-methylpyridine: a highly potent and orally bioavailable metabotropic glutamate subtype 5 (mGlu5) receptor antagonist. Bioorg Med Chem Lett 14:5477–5480Google Scholar
  174. Priestley T, Kemp JA (1994) Kinetic study of the interactions between the glutamate and glycine recognition sites on the N-methyl-d-aspartic acid receptor complex. Mol Pharmacol 46:1191–1196Google Scholar
  175. Priestley T, Marshall GR, Hill RG, Kemp JA (1998) l-687,414, a low efficacy NMDA receptor glycine site partial agonist in vitro, does not prevent hippocampal LTP in vivo at plasma levels known to be neuroprotective. Br J Pharmacol 124:1767–1773Google Scholar
  176. Quirk JC, Nisenbaum ES (2002) LY404187: a novel positive allosteric modulator of AMPA receptors. CNS Drug Rev 8:255–282Google Scholar
  177. Ransom RW, Stec NL (1988) Cooperative modulation of [3H]MK-801 binding to the N-methyl-d-aspartate receptor-ion channel complex by l-glutamate, glycine, and polyamines. J Neurochem 51:830–836Google Scholar
  178. Reddy NL, Hu LY, Cotter RE, Fischer JB, Wong WJ, McBurney RN, Weber E, Holmes DL, Wong ST, Prasad R (1994) Synthesis and structure–activity studies of N,N′-diarylguanidine derivatives. N-(1-Naphthyl)-N′-(3-ethylphenyl)-N′-methylguanidine: a new, selective noncompetitive NMDA receptor antagonist. J Med Chem 37:260–267Google Scholar
  179. Rigby M, Le Bourdelles B, Heavens RP, Kelly S, Smith D, Butler A, Hammans R, Hills R, Xuereb JH, Hill RG, Whiting PJ, Sirinathsinghji DJ (1996) The messenger RNAs for the N-methyl-d-aspartate receptor subunits show region-specific expression of different subunit composition in the human brain. Neuroscience 73:429–447Google Scholar
  180. Rogawski MA, Gryder D, Castaneda D, Yonekawa W, Banks MK, Lia H (2003) GluR5 kainate receptors, seizures, and the amygdala. Ann N Y Acad Sci 985:150–162Google Scholar
  181. Romano C, Yang W-L, O’Malley KL (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 271:28612–28616Google Scholar
  182. Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280:1596–1599PubMedGoogle Scholar
  183. Rosemund E, Peltekova V, Naples M, Thogersen H, Hampson DR (2002) Molecular determinants of high affinity binding to group III metabotropic glutamate receptors. J Biol Chem 277:7333–7340Google Scholar
  184. Rowley M, Kulagowski JJ, Watt AP, Rathbone D, Stevenson GI, Carling RW, Baker R, Marshall GR, Kemp JA, Foster AC, Grimwood S, Hargreaves R, Hurley C, Saywell KL, Tricklebank MD, Leeson PD (1997) Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. J Med Chem 40:4053–4068Google Scholar
  185. Ruel J, Guitton MJ, Puel J-L (2002) Negative allosteric modulation of AMPA-preferring receptors by the selective isomer GYKI 53784 (LY303070), a specific non-competitive AMPA antagonist. CNS Drug Rev 8:235–254Google Scholar
  186. Sasaki YF, Rothe T, Premkumar LS, Das S, Cui J, Talantova MV, Wong HK, Gong X, Chan SF, Zhang D, Nakanishi N, Sucher NJ, Lipton SA (2002) Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 87:2052–2063Google Scholar
  187. Sato T, Shimada Y, Nagasawa N, Nakanishi S, Jingami J (2003) Amino acid mutagenesis of the ligand binding site and the dimer interface of the metabotropic glutamate receptor 1. J Biol Chem 278:4314–4321Google Scholar
  188. Schaffhauser H, Rowe BA, Morales S, Chavez-Noriega LE, Yin R, Jachec C, Rao SP, Bain B, Pinkerton AB, Vernier J-M, Bristow LJ, Varney MA, Dagget LP (2003) Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol Pharmacol 64:798–810Google Scholar
  189. Schiffer HH, Swanson GT, Heinemann S (1997) Rat GluR7 and a carboxy-terminal splice variant, BluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19:1141–1146Google Scholar
  190. Schoepp DD, Marek GJ (2002) Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia? Curr Drug Targets CNS Neurol Disord 1:215–225Google Scholar
  191. Schoepp DD, Goldsworth J, Johnson BG, Salhoff CR, Baker SR (1994) 3,5-Dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. J Neurochem 63:769–772Google Scholar
  192. Schoepp DD, Jane DE, Monn JA (1999a) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1431–1476CrossRefPubMedGoogle Scholar
  193. Schoepp DD, Monn JA, Marek GJ, Aghajanian G, Moghadam B (1999b) LY354740: a systemically active mGlu2/mGlu3 receptor agonist. CNS Drug Rev 5:1–12Google Scholar
  194. Schoepp DD, Wright RA, Levine LR, Gaydos B, Potter WZ (2003) LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress. Stress 6:189–197CrossRefPubMedGoogle Scholar
  195. Schorge S, Colquhoun D (2003) Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 23:1151–1158Google Scholar
  196. Schweitzer C, Kratzeisen C, Adam G, Lundstrom K, Malherbe P, Ohresser S, Stadler H, Wichmann J, Woltering T, Mutel V (2000) Characterisation of [3H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using Semliki Forest virus vectors. Neuropharmacology 39:1700–1706Google Scholar
  197. Seeburg PH, Hartner J (2003) Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol 13:279–283Google Scholar
  198. Sekiguchi M, Fleck MW, Mayer ML, Takeo J, Chiba Y, Yamashita S, Wada K (1997) A novel allosteric potentiator of AMPA receptors: 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetamide. J Neurosci 17:5760–5771Google Scholar
  199. Sekiguchi M, Nishikawa K, Aoki S, Wada K (2002) A desensitization-selective potentiator of AMPA-type glutamate receptors. Br J Pharmacol 136:1033–1041Google Scholar
  200. Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P, Honore T (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571–574Google Scholar
  201. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368:144–147Google Scholar
  202. Shigemoto R, Mizuno N (2000) Metabotropic glutamate receptors-immunocytochemical and in situ hybridisation analysis. In: Ottersen OP, Storm-Mathisen J (eds) Handbook of chemical neuroanatomy 18: glutamate. Elsevier, Amsterdam, pp 63–98Google Scholar
  203. Small B, Thomas J, Kemp M, Hoo K, Ballyk B, Deverill M, Ogden AM, Rubio A, Pedegral C, Bleakman D (1998) LY339434, a GluR5 kainate receptor agonist. Neuropharmacology 37:1261–1267Google Scholar
  204. Smith ND, Poon SF, Huang D, Green M, King C, Tehrani L, Roppe JR, Chung J, Chapman DP, Cramer M, Cosford ND (2004) Discovery of highly potent, selective, orally bioavailable, metabotropic glutamate subtype 5 (mGlu5) receptor antagonists devoid of cytochrome P450 1A2 inhibitory activity. Bioorg Med Chem Lett 14:5481–5484Google Scholar
  205. Solyom S, Tarnawa I (2002) Non-competitive AMPA antagonists of 2,3-benzodiazepine type. Curr Pharm Des 8:913–939Google Scholar
  206. Spooren W, Gasparini F (2004) mGlu5 receptor antagonists: a novel class of anxiolytics? Drug News Perspect 17:251–257Google Scholar
  207. Spooren W, Ballard T, Gasparini F, Amalric M, Mutel V, Schreiber R (2003) Insight into the function of Group I and Group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav Pharmacol 14:257–277PubMedGoogle Scholar
  208. Stachowicz K, Klak K, Klodzinska A, Chojnacka-Wojcik E, Pilc A (2004) Anxiolytic-like effects of PHCCC, an allosteric modulator of mGlu4 receptors, in rats. Eur J Pharmacol 498:153–156Google Scholar
  209. Stensbol TB, Madsen U, Krogsgaard-Larsen P (2002) The AMPA receptor binding site: focus on agonists and competitive antagonists. Curr Pharm Des 8:857–872Google Scholar
  210. Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E (2002) Mechanism of glutamate receptor desensitisation. Nature 417:245–253Google Scholar
  211. Suzuki Y, Moriyoshi E, Tsuchiya D, Jingami H (2004) Negative cooperativity of glutamate binding in the dimeric metabotropic glutamate receptor subtype 1. J Biol Chem 279:35526–35534Google Scholar
  212. Swanson GT, Green T, Heinemann SF (1998) Kainate receptors exhibit differential sensitivities to (S)-5-iodowillardiine. Mol Pharmacol 53:942–949Google Scholar
  213. Szabados T, Gigler G, Gacsalyi I, Gyertyan I, Levay G (2001) Comparison of anticonvulsive and acute neuroprotective activity of three 2,3-benzodiazepine compounds, GYKI 52466, GYKI 53405, and GYKI 53655. Brain Res Bull 55:387–391Google Scholar
  214. Takahashi M, Kohara A, Shishikura J, Kawasaki-Yatsugi S, Ni JW, Yatsugi S, Sakamoto S, Okada M, Shimizu-Sasamata M, Yamaguchi T (2002) YM872: a selective, potent and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. CNS Drug Rev 8:337–352Google Scholar
  215. Takano K, Tatlisumak T, Formato JE, Carano RA, Bergmann AG, Pullan LM, Bare TM, Sotak CH, Fisher M (1997) Glycine site antagonist attenuates infarct size in experimental focal ischemia. Postmortem and diffusion mapping studies. Stroke 28:1255–1262Google Scholar
  216. Tarnawa I, Bersenyi P, Andrasi F, Botka P, Hamori T, Ling I, Korosi J (1993) Structure–activity relationships of 2,3-benzodiazepine compounds with glutamate antagonistic action. Bioorg Med Chem Lett 3:99–104Google Scholar
  217. Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp DD, Jane DE (2001) (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neurophamacology 40:311–318Google Scholar
  218. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence aligment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  219. Thomsen C, Boel E, Suzdak PD (1994) Actions of phenylglycine analogs at subtypes of the metabotropic glutamate receptor family. Eur J Pharmacol 267:77–84Google Scholar
  220. Tsuchiya D, Kunishima N, Kamiya N, Jingami H, Morikawa K (2002) Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci U S A 99:2660–2665Google Scholar
  221. Tsuji Y, Shimada Y, Takeshita T, Kajimura N, Nomura S, Sekiyama N, Otomo J, Usukura J, Nakanishi S, Jingami H (2000) Cryptic dimmer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J Biol Chem 275:28144–28151Google Scholar
  222. Turski L, Huth A, Sheardown M, McDonald F, Neuhaus R, Schneider HH, Dirnagl U, Wiegand F, Jacobsen P, Ottow E (1998) ZK200775: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. Proc Natl Acad Sci U S A 95:10960–10965Google Scholar
  223. Varney MA, Cosford NDP, Jachec C, Rao SP, Sacaan A, Lin F-F, Bleicher L, Santori EM, Flor PJ, Allgeier H, Gasparini F, Kuhn R, Hess SD, Velicelebi G, Johnson EC (1999) SIB-1757 and SIB-1893: selective, noncompetitive antagonists of metabotropic glutamate receptor type 5. J Pharmacol Exp Ther 290:170–181Google Scholar
  224. Wafford KA, Kathoria M, Bain CJ, Marshall G, Le Bourdelles B, Kemp JA, Whiting PJ (1995) Identification of amino acids in the N-methyl-d-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 47:374–380Google Scholar
  225. Walker K, Reeve A, Bowes M, Winter J, Wotherspoon G, Davis A, Schmid P, Gasparini F, Kuhn R, Urban L (2001) mGlu5 receptors and nociceptive function II. mGlu5 receptors on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacology 40:10–19Google Scholar
  226. Watanabe M, Inoue Y, Sakimura K, Mishina M (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. NeuroReport 3:1138–1140Google Scholar
  227. Watanabe M, Inoue Y, Sakimura K, Mishina M (1993) Distinct distributions of five N-methyl-d-aspartate receptor channel subunit messenger RNAs in the forebrain. J Comp Neurol 338:377–390Google Scholar
  228. Watkins JC, Krogsgaard-Larsen P, Honore T (1990) Structure–activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11:25–33Google Scholar
  229. Welch WM, Ewing FE, Huang J, Menniti FS, Pagnozzi MJ, Kelly K, Seymour PA, Guanowsky V Guhan S, Guinn MR, Critchett D, Lazzaro J, Ganong AH, DeVries KM, Staigers TL, Chenard BL (2001) Atropisomeric quinazolin-4-one derivatives are potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. Bioorg Med Chem Lett 11:177–181Google Scholar
  230. Wenzel A, Fritschy JM, Mohler H, Benke D (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 68:469–478Google Scholar
  231. Wichmann J, Bleicher K, Vieira E, Woltering T, Knoflach F, Mutel V (2002) Alkyl diphenylacetyl, 9H-xanthene- and 9H-thioxanthene-carbonyl carbamates as positive allosteric modulators of mGlu1 receptors. Farmaco 57:989–992Google Scholar
  232. Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-d-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44:851–859Google Scholar
  233. Williams K (1997) Modulation and block of ion channels: a new biology of polyamines. Cell Signal 9:1–13Google Scholar
  234. Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-d-aspartate antagonist. Proc Natl Acad Sci U S A 83:7104–7108Google Scholar
  235. Wroblewska B, Wroblewska JT, Pshenichkin S, Surin A, Sullivan SS, Neale JH (1997) N-Acetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J Neurochem 69:174–181Google Scholar
  236. Yamada KA, Tang C-M (1993) Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J Neurosci 13:3904–3915Google Scholar
  237. Zarrinmayeh H, Bleakman D, Gates M, Yu H, Zimmerman DM, Ornstein PL, McKennon T, Arnold MB, Wheeler WJ, Skolnick P (2001) [3H]N-2-(4-(N-Benzamido)phenyl)propyl-2-propanesulfonamide: a novel AMPA receptor potentiator and radioligand. J Med Chem 44:302–304Google Scholar
  238. Zhong J, Carrozza DP, Williams K, Pritchett DB, Molinoff PB (1995) Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J Neurochem 64:531–539Google Scholar
  239. Zhou ZL, Cai SX, Whittemore ER, Konkoy CS, Espitia SA, Tran M, Rock DM, Coughenour LL, Hawkinson JE, Boxer PA, Bigge CF, Wise LD, Weber E, Woodward RM, Keana JF (1999) 4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist. J Med Chem 42:2993–3000Google Scholar
  240. Zhou ZL, Kher SM, Cai SX, Whittemore ER, Espitia SA, Hawkinson JE, Tran M, Woodward RM, Weber E, Keana JF (2003) Synthesis and SAR of novel di- and trisubstituted 1,4-dihydroquinoxaline-2,3-diones related to licostinel (Acea 1021) as NMDA/glycine site antagonists. Bioorg Med Chem 11:1769–1780Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Psychiatry Centre of Excellence for Drug DiscoveryGlaxoSmithKlineEssexUK
  2. 2.Evotec Neurosciences GmbHHamburgGermany

Personalised recommendations