Psychopharmacology

, Volume 179, Issue 1, pp 207–217 | Cite as

The antinociceptive and anxiolytic-like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of efficacy and side-effect profiles

  • Geoffrey B. Varty
  • Mariagrazia Grilli
  • Angelo Forlani
  • Silva Fredduzzi
  • Michael E. Grzelak
  • Donald H. Guthrie
  • Robert A. Hodgson
  • Sherry X. Lu
  • Elisa Nicolussi
  • Annamarie J. Pond
  • Eric M. Parker
  • John C. Hunter
  • Guy A. Higgins
  • Angelo Reggiani
  • Rosalia Bertorelli
Original Investigation

Abstract

Rationale

Modulation of metabotropic glutamate receptor (mGluR) subtypes represents a novel approach for the treatment of neurological and psychiatric disorders.

Objectives

This study was conducted to investigate the role of the mGluR5 and mGluR1 subtypes in the modulation of pain and anxiety.

Methods

The mGluR5 antagonists, 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), and the mGluR1 antagonist, (4-methoxy-phenyl)-(6-methoxy-quinazolin-4-yl)-amine HCl (LY456236), were tested in models of pain [mouse formalin test, rat spinal nerve ligation (SNL)] and anxiety [Vogel conflict, conditioned lick suppression (CLS)], and their efficacious effects were compared to any associated side effects.

Results

The systemic administration of MPEP, MTEP, and LY456236 reduced hyperalgesia induced by formalin and mechanical allodynia following SNL. However, only LY456236 completely reversed the allodynia. In the anxiety models, MPEP (3–30 mg/kg), MTEP (3–10 mg/kg), and LY456236 (10–30 mg/kg) produced anxiolytic-like effects similar to the benzodiazepine, chlordiazepoxide (CDP, 6 mg/kg). However, only MPEP and MTEP were able to produce a level of anxiolysis comparable to CDP. In a series of tests examining potential side effects, MPEP and MTEP reduced body temperature and locomotor activity and impaired operant responding for food and rotarod performance at doses of 3–30 and 1–30 mg/kg, respectively. LY456236 reduced operant responding at 30 mg/kg.

Conclusion

Both mGluR5 and mGluR1 antagonists are effective in models of pain and anxiety. However, an mGluR1 antagonist was more efficacious than the two mGluR5 antagonists in the pain models, which, conversely, appeared more efficacious in the anxiety models. These findings support the potential utility of mGluR5 and mGluR1 antagonists for both the treatment of chronic pain and as novel anxiolytics.

Keywords

mGluR1 mGluR5 Neuropathic pain Anxiolysis Behavior 

References

  1. Anderson JJ, Rao SP, Rowe B, Giracello DR, Holtz G, Chapman DF, Tehrani L, Bradbury MJ, Cosford ND, Varney MA (2002) [3H]Methoxymethyl-3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization. J Pharmacol Exp Ther 303:1044–1051CrossRefGoogle Scholar
  2. Anderson JJ, Bradbury MJ, Giracello DR, Chapman DF, Holtz G, Roppe J, King C, Cosford ND, Varney MA (2003) In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine). Eur J Pharmacol 473:35–40CrossRefGoogle Scholar
  3. Barton ME, Peters SC, Shannon HE (2003) Comparison of the effect of glutamate receptor modulators in the 6 Hz and maximal electroshock seizure models. Epilepsy Res 56:17–26CrossRefGoogle Scholar
  4. Bhave G, Karim F, Carlton SM, Gereau RW IV (2001) Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci 4:417–423CrossRefPubMedGoogle Scholar
  5. Bordi F, Ugolini A (1999) Group I metabotropic glutamate receptors: implications for brain diseases. Prog Neurobiol 59:55–79CrossRefPubMedGoogle Scholar
  6. Bordi F, Ugolini A (2000) Involvement of mGluR(5) on acute nociceptive transmission. Brain Res 871:223–233CrossRefPubMedGoogle Scholar
  7. Brodkin J, Busse C, Sukoff SJ, Varney MA (2002a) Anxiolytic-like activity of the mGluR5 antagonist MPEP a comparison with diazepam and buspirone. Pharmacol Biochem Behav 73:359–366CrossRefPubMedGoogle Scholar
  8. Brodkin J, Bradbury M, Busse C, Warren N, Bristow LJ, Varney MA (2002b) Reduced stress-induced hyperthermia in mGluR5 knockout mice. Eur J Neurosci 16:2241–2244CrossRefPubMedGoogle Scholar
  9. Brody SA, Conquet F, Geyer MA (2003) Disruption of prepulse inhibition in mice lacking mGluR1. Eur J Neurosci 18:3361–3366CrossRefGoogle Scholar
  10. Brody SA, Dulawa SC, Conquet F, Geyer MA (2004) Assessment of a prepulse inhibition deficit in a mutant mouse lacking mGlu5 receptors. Mol Psychiatry 9:35–41CrossRefGoogle Scholar
  11. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63CrossRefGoogle Scholar
  12. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237CrossRefPubMedGoogle Scholar
  13. Cosford NDP, Tehrani L, Roppe J, Schweiger E, Smith ND, Anderson J, Bristol L, Brodkin J, Jiang X, McDonald I, Rao S, Washburn M, Varney MA (2003) 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 46:204–206CrossRefGoogle Scholar
  14. Dogrul A, Ossipov MH, Lai J, Malan TP Jr, Porreca F (2000) Peripheral and spinal antihyperalgesic activity of SIB-1757, a metabotropic glutamate receptor (mGLUR(5)) antagonist, in experimental neuropathic pain in rats. Neurosci Lett 292:115–118CrossRefGoogle Scholar
  15. Dolan S, Nolan AM (2002) Behavioral evidence supporting a differential role for spinal group I and II metabotropic glutamate receptors in inflammatory hyperalgesia in sheep. Neuropharmacology 43:319–326CrossRefGoogle Scholar
  16. Dolan S, Kelly JG, Monteiro AM, Nolan AM (2003) Up-regulation of metabotropic glutamate receptor subtypes 3 and 5 in spinal cord in a clinical model of persistent inflammation and hyperalgesia. Pain 106:501–512CrossRefGoogle Scholar
  17. Fisher K, Coderre TJ (1998) Hyperalgesia and allodynia induced by intrathecal (RS)-dihydroxyphenylglycine in rats. NeuroReport 20:1169–1172Google Scholar
  18. Fisher K, Lefebvre C, Coderre TJ (2002) Antinociceptive effects following intrathecal pretreatment with selective metabotropic glutamate receptor compounds in a rat model of neuropathic pain. Pharmacol Biochem Behav 73:411–418CrossRefGoogle Scholar
  19. Fundytus ME, Fisher K, Dray A, Henry JL, Coderre TJ (1998) In vivo antinociceptive activity of anti-rat mGluR1 and mGluR5 antibodies in rats. NeuroReport 9:731–735PubMedGoogle Scholar
  20. Fundytus ME, Yashpal K, Chabot JG, Osborne MG, Lefebvre CD, Dray A, Henry JL, Coderre TJ (2001) Knockdown of spinal metabotropic glutamate receptor 1 (mGluR(1)) alleviates pain and restores opioid efficacy after nerve injury in rats. Br J Pharmacol 132:354–367PubMedGoogle Scholar
  21. Fundytus ME, Osborne MG, Henry JL, Coderre TJ, Dray A (2002) Antisense oligonucleotide knockdown of mGluR1 alleviates hyperalgesia and allodynia associated with chronic inflammation. Pharmacol Biochem Behav 73:401–410CrossRefGoogle Scholar
  22. Gasparini F, Lingenhohl K, Stoehr N, Flor PJ, Heinrich M, Vranesic I, Biollaz M, Allgeier H, Heckendorn R, Urwyler S, Varney MA, Johnson EC, Hess SD, Rao SP, Sacaan AI, Santori EM, Velicelebi G, Kuhn R (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38:1493–1503CrossRefPubMedGoogle Scholar
  23. Hofmann HA, Siegling A, Denzer D, Spreyer P, De Vry J (2001) Metabotropic glutamate mGlu1 receptor mRNA expression in dorsal root ganglia of rats after peripheral nerve injury. Eur J Pharmacol 429:135–138CrossRefGoogle Scholar
  24. Hudson LJ, Bevan S, McNair K, Gentry C, Fox A, Kuhn R, Winter J (2002) Metabotropic glutamate receptor 5 upregulation in A-fibers after spinal nerve injury: 2-methyl-6-(phenylethynyl)-pyridine (MPEP) reverses the induced thermal hyperalgesia. J Neurosci 22:2660–2668Google Scholar
  25. Karim F, Wang CC, Gereau RW IV (2001) Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci 21:3771–3779Google Scholar
  26. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363CrossRefPubMedGoogle Scholar
  27. Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ (2003) Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 306:116–123CrossRefGoogle Scholar
  28. Klodzinska A, Tatarczynska E, Chojnacka-Wojcik E, Pilc A (2000) Anxiolytic-like effects of group I metabotropic glutamate antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) in rats. Pol J Pharmacol 52:463–466PubMedGoogle Scholar
  29. Klodzinska A, Tatarczynska E, Stachowicz K, Chojnacka-Wojcik E (2004a) The anxiolytic-like activity of AIDA (1-aminoindan-1,5-dicarboxylic acid), an mGlu 1 receptor antagonist. J Physiol Pharmacol 55:113–126PubMedGoogle Scholar
  30. Klodzinska A, Tatarczynska E, Chojnacka-Wojcik E, Nowak G, Cosford ND, Pilc A (2004b) Anxiolytic-like effects of MTEP, a potent and selective mGlu5 receptor agonist does not involve GABA(A) signaling. Neuropharmacology 47:342–350CrossRefGoogle Scholar
  31. Lareysen H, Janssen C, Bishoff F, Langlois X, Leysen JE, Lesage AS (2003) [3H]R214127: a novel high-affinity radioligand for the mGlu1 receptor reveals a common binding site shared by multiple allosteric antagonists. Mol Pharmacol 63:1082–1093CrossRefGoogle Scholar
  32. Li W, Neugebauer V (2004) Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol 91:13–24CrossRefGoogle Scholar
  33. Mills CD, Hulsebosch CE (2002) Increased expression of metabotropic glutamate receptor subtype 1 on spinothalamic tract neurons following spinal cord injury in the rat. Neurosci Lett 319:59–62CrossRefGoogle Scholar
  34. Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13:1031–1037CrossRefGoogle Scholar
  35. Neugebauer V (2001) Peripheral metabotropic glutamate receptors: fight the pain where it hurts. Trends Neurosci 24:550–552CrossRefGoogle Scholar
  36. Neugebauer V, Chen PS, Willis WD (1999) Role of metabotropic glutamate receptor subtype mGluR1 in brief nociception and central sensitization of primate STT cells. J Neurophysiol 82:272–282PubMedGoogle Scholar
  37. Neugebauer V, Li W, Bird GC, Bhave G, Gereau RW IV (2003) Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 23:52–63Google Scholar
  38. Noda K, Anzai T, Ogata M, Akita H, Ogura T, Saji M (2003) Antisense knockdown of spinal-mGluR1 reduces the sustained phase of formalin-induced nociceptive responses. Brain Res 987:194–200CrossRefGoogle Scholar
  39. Pilc A, Klodzinska A, Branski P, Nowak G, Palucha A, Szewczyk B, Tatarczynska E, Chojnacka-Wojcik E, Wieronska JM (2002) Multiple MPEP administrations evoke anxiolytic- and antidepressant-like effects in rats. Neuropharmacology 43:181–187CrossRefGoogle Scholar
  40. Schoepp DD, Jane DE, Monn JA (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1431–1476CrossRefPubMedGoogle Scholar
  41. Schulz B, Fendt M, Gasparini F, Lingenhohl K, Kuhn R, Koch M (2001) The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41:1–7Google Scholar
  42. Sotgiu ML, Bellomi P, Biella GE (2003) The mGluR5 selective antagonist 6-methyl-2-(phenylethynyl)-pyridine reduces the spinal neuron pain-related activity in mononeuropathic rats. Neurosci Lett 342:85–88CrossRefGoogle Scholar
  43. Spooren WP, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, Porsolt RD, Gentsch C (2000) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295:1267–1275PubMedGoogle Scholar
  44. Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, Palucha A, Gasparini F, Kuhn R, Pilc A (2001) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132:1423–1430PubMedGoogle Scholar
  45. Urban MO, Hama AT, Bradbury M, Anderson J, Varney MA, Bristow L (2003) Role of metabotropic glutamate receptor subtype 5 (mGluR5) in the maintenance of cold hypersensitivity following a peripheral mononeuropathy in the rat. Neuropharmacology 44:983–993CrossRefGoogle Scholar
  46. Walker K, Bowes M, Panesar M, Davis A, Gentry C, Kesingland A, Gasparini F, Spooren W, Stoehr N, Pagano A, Flor PJ, Vranesic I, Lingenhoehl K, Johnson EC, Varney M, Urban L, Kuhn R (2001a) Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function. I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain. Neuropharmacology 40:1–9CrossRefGoogle Scholar
  47. Walker K, Reeve A, Bowes M, Winter J, Wotherspoon G, Davis A, Schmid P, Gasparini F, Kuhn R, Urban L (2001b) mGlu5 receptors and nociceptive function. II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacology 40:10–19CrossRefGoogle Scholar
  48. Yashpal K, Fisher K, Chabot JG, Coderre TJ (2001) Differential effects of NMDA and group I mGluR antagonists on both nociception and spinal cord protein kinase C translocation in the formalin test and a model of neuropathic pain in rats. Pain 94:17–29CrossRefGoogle Scholar
  49. Young MR, Fleetwood-Walker SM, Mitchell R, Munro FE (1994) Evidence for a role of metabotropic glutamate receptors in sustained nociceptive inputs to rat dorsal horn neurons. Neuropharmacology 33:141–144CrossRefGoogle Scholar
  50. Young MR, Fleetwood-Walker SM, Dickinson T, Blackburn-Munro G, Sparrow H, Birch PJ, Bountra C (1997) Behavioural and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. Brain Res 777:161–169CrossRefGoogle Scholar
  51. Young MR, Blackburn-Munro G, Dickinson T, Johnson MJ, Anderson H, Nakalembe I, Fleetwood-Walker SM (1998) Antisense ablation of type I metabotropic glutamate receptor mGluR1 inhibits spinal nociceptive transmission. J Neurosci 18:10180–10188Google Scholar
  52. Zhou S, Komak S, Du J, Carlton SM (2001) Metabotropic glutamate 1alpha receptors on peripheral primary afferent fibers: their role in nociception. Brain Res 913:18–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Geoffrey B. Varty
    • 1
  • Mariagrazia Grilli
    • 2
  • Angelo Forlani
    • 2
  • Silva Fredduzzi
    • 2
  • Michael E. Grzelak
    • 1
  • Donald H. Guthrie
    • 1
  • Robert A. Hodgson
    • 1
  • Sherry X. Lu
    • 1
  • Elisa Nicolussi
    • 2
  • Annamarie J. Pond
    • 1
  • Eric M. Parker
    • 1
  • John C. Hunter
    • 1
  • Guy A. Higgins
    • 1
  • Angelo Reggiani
    • 2
  • Rosalia Bertorelli
    • 2
  1. 1.Department of NeurobiologySchering Plough Research InstituteKenilworthUSA
  2. 2.Department of NeurobiologySchering Plough Research InstituteMilanItaly

Personalised recommendations