, Volume 179, Issue 3, pp 559–566 | Cite as

Impaired perception of self-motion (heading) in abstinent ecstasy and marijuana users

  • M. RizzoEmail author
  • C. T. J. Lamers
  • C. G. Sauer
  • J. G. Ramaekers
  • A. Bechara
  • G. J. Andersen
Original Investigation



Illicit drug use can increase driver crash risk due to loss of control over vehicle trajectory. This study asks, does recreational use of ±3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) and tetrahydrocannabinol (THC; marijuana) impair cognitive processes that help direct our safe movement through the world?


This study assesses the residual effects of combined MDMA/THC use, and of THC use alone, upon perceived trajectory of travel.


Perception of self-motion, or heading, from optical flow patterns was assessed using stimuli comprising random dot ground planes presented at three different densities and eight heading angles (1, 2, 4 and 8° to the left or right). On each trial, subjects reported if direction of travel was to the left or the right.


Results showed impairments in both drug groups, with the MDMA/THC group performing the worst.


The finding that these psychoactive agents adversely affect heading perception, even in recently abstinent users, raises potential concerns about MDMA use and driving ability.


MDMA Driving THC Substance abuse Visual motion 



This study was supported by NIH PO NS 19632 and NIA AG 17177.


  1. Aguirre N, Frechilla D, Garcia-Osta A, Lasheras B, Del Rio J (1997) Differential regulation by methylenedioxymethamphetamine of 5-hydroxytryptamine1A receptor density and mRNA expression in rat hippocampus, frontal cortex, and brainstem: the role of corticosteroids. J Neurochem 68:1099–1105Google Scholar
  2. Allman JM, Kaas JH (1971) Representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (aotus trivirgatus). Brain Res 31:84–105Google Scholar
  3. Andersen GJ, Saidpour A (1999) Optical information for the control of steering: a control theory analysis. In Harris DH (ed) Cognitive ergonomics and engineering psychology, vol 3. Ashgate, Aldershot, England, pp 359–367Google Scholar
  4. Andersen GJ, Saidpour A (2002) Necessity of spatial pooling for the perception of heading in non-rigid environments. J Exp Psychol Hum Percept Perform 28:1192–1201Google Scholar
  5. Ball K, Owsley C, Sloane M, Roenker D, Bruni J (1993) Visual attention problems as a predictor of vehicle crashes in older drivers. Invest Ophthalmol Vis Sci 34:3110–3123Google Scholar
  6. Braunstein ML, Anderson GJ (1984) Shape and depth perception from parallel projections of three-dimensional motion. J Exp Psychol Hum Percept Perform 10: 749–760Google Scholar
  7. Christman C, Setterberg S, Nawrot M (2003) Motion perception with 5-HT2 receptor-blocking medications [Abstract]. J Vis 3(9):290aGoogle Scholar
  8. Colado MI, Esteban B, O’Shea E, Granados R, Green AR (1999) Studies on the neuroprotective effect of pentobarbitone on MDMA-induced neurodegeneration. Psychopharmacology (Berl) 142:421–425Google Scholar
  9. Cowan RL, deB D, Haga FE, Rohan M, Levin J, Renshaw PF, Lukas SE (2001) Visual cortex activation using the fMRI blood oxygen level-dependent (BOLD) method in human MDMA (Ecstasy) users. In: MDMA/Ecstasy research: advances, challenges, future directions. July 19–20, 2001 Natcher Auditorium, NIH Campus Sponsored by the National Institute on Drug Abuse (, accessed October 17, 2004
  10. Croft RJ, Mackay AJ, Mills AT, Gruzelier JG (2001) The relative contributions of ecstasy and cannabis to cognitive impairment. Psychopharmacology (Berl) 153:373–379Google Scholar
  11. de Lima AD, Bloom FE, Morrison JH (1988). Synaptic organization of serotonin-immunoreactive fibers in primary visual cortex of the macaque monkey. J Comp Neurol 8 274(2):280–294Google Scholar
  12. Duffy CJ, Wurtz RH (1991) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65:1329–1345Google Scholar
  13. Dyre BP, Andersen GJ (1997) Image velocity magnitudes and perception of heading. J Exp Psychol Hum Percept Perform 23:546–565Google Scholar
  14. Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, BostonGoogle Scholar
  15. Goldberg D (1972) GHQ: the selection of psychiatric illness by questionnaire. Oxford University Press, LondonGoogle Scholar
  16. Gouzoulis-Mayfrank E, Daumann J, Tuchtenhagen F, Pelz S, Becker S, Kunert HJ, Fimm B, Sass H (2000) Impaired cognitive performance in drug free users of recreational ecstasy (MDMA). J Neurol Neurosurg Psychiatry 68:719–725CrossRefPubMedGoogle Scholar
  17. Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vis Res 41:1409–1422Google Scholar
  18. Grober E, Sliwinski M (1991) Development and validation of a model for estimating premorbid verbal intelligence in the elderly. J Clin Exp Neuropsychol 13:933–949PubMedGoogle Scholar
  19. Grunbauer WM, Dieterich M, Brandt T (1998) Bilateral vestibular failure impairs visual motion perception even with the head still. NeuroReport 9:1807–1810Google Scholar
  20. Hoddes E, Zarcone V, Smythe H, Phillips R, Dement WC (1973) Quantification of sleepiness: a new approach. Psychophysiology 10:431–436PubMedGoogle Scholar
  21. Horton JC, Trobe JD (1999) Akinetopsia from nefazodone toxicity. Am J Ophthalmol 128:530–531Google Scholar
  22. Koenderink JJ (1986) Optic flow. Vis Res 26:161–179Google Scholar
  23. Krystal JH, Price LH, Opsahl C, Ricaurte GA, Heninger GR (1992) Chronic 3,4-methylenedioxymethamphetamine (MDMA) use: effects on mood and neuropsychological function? Am J Drug Alcohol Abuse 18:331–341Google Scholar
  24. Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proc R Soc Lond B Biol Sci 208:385–397Google Scholar
  25. Loomis JM, Beall AC (1998) Visually controlled locomotion: Its dependence on optic flow, three-dimensional space perception and cognition. Ecol Psychol 10:271–285Google Scholar
  26. Luu CD, Kiely P, Crewther DP, Kowal L, Crewther S (2003) Central and peripheral vision loss associated with nefazodone usage. Doc Ophthalmol 106:319–325Google Scholar
  27. Lyles J, Cadet JL (2003) Methylenedioxymethamphetamine (MDMA, Ecstasy) neurotoxicity: cellular and molecular mechanisms. Brain Res Brain Res Rev 42:155–168Google Scholar
  28. Mantyjarvi M, Laitinen T (2001) Normal values for the Pelli-Robson contrast sensitivity test. J Cataract Refract Surg 27:261–266CrossRefPubMedGoogle Scholar
  29. Marquet P, Delpla P-A, Kerguelen S, Bremond J, Facy F, Garnier M, Guery B, Lhermitte M, Mathe D, Pelissier A-L, Renaudeau C, Vest P, Seguela J-P (1998) Prevalence of drugs of abuse in urine of drivers involved in road accidents in France: a collaborative study. J Forensic Sci 43(4):806–811Google Scholar
  30. McCann UD, Ridenour A, Shaham Y, Ricaurte GA (1994) Serotonin neurotoxicity after (+/−)3,4-methylenedioxymethamphetamine (MDMA; “Ecstasy”): a controlled study in humans. Neuropsychopharmacology 10:129–138Google Scholar
  31. McCann UD, Mertl M, Eligulashvili V, Ricaurte GA (1999) Cognitive performance in (+/−) 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) users: a controlled study. Psychopharmacology (Berl) 143:417–425Google Scholar
  32. McCann UD, Eligulashvili V, Ricaurte GA (2000) (+/−)3,4-Methylenedioxymethamphetamine (‘Ecstasy’)-induced serotonin neurotoxicity: clinical studies. Neuropsychobiology 42:11–16CrossRefGoogle Scholar
  33. Mechan AO, Moran PM, Elliott M, Young AJ, Joseph MH, Green R (2002) A study of the effect of a single neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; “ecstasy”) on the subsequent long-term behaviour of rats in the plus maze and open field. Psychopharmacology (Berl) 159:167–175Google Scholar
  34. Morgan MJ (1998) Recreational use of “ecstasy” (MDMA) is associated with elevated impulsivity. Neuropsychopharmacology 19:252–264CrossRefPubMedGoogle Scholar
  35. Morgan MJ, McFie L, Fleetwood H, Robinson JA (2002) Ecstasy (MDMA): are the psychological problems associated with its use reversed by prolonged abstinence? Psychopharmacology (Berl) 159:294–303Google Scholar
  36. Morland J (2000) Driving under the influence of non-alcoholic drugs. Forensic Sci Rev 12:79–105Google Scholar
  37. Nawrot M (2003) Disorders of motion and depth. Neurol Clin 21:609–629Google Scholar
  38. Nawrot M, Rizzo M (1998) Chronic motion perception deficits from midline cerebellar lesions in human. Vision Res 38: 2219-2224Google Scholar
  39. Nawrot M, Rizzo M, Rockland KS, Howard M III (2000) A transient deficit of motion perception in human, Vision Res 40:3435–3446Google Scholar
  40. Newsome WT, Paré EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8:2201–2211Google Scholar
  41. Orban GA, Dupont P, De Bruyn B et al (1995) A motion area in human visual cortex. Proc Natl Acad Sci 92:993–997Google Scholar
  42. Owsley C (1994) Vision and driving in the elderly. Optom Vis Sci 71:727–735PubMedGoogle Scholar
  43. Parrott AC (2001) Human psychopharmacology of Ecstasy (MDMA): a review of 15 years of empirical research. Hum Psychopharmacol 16:557–577CrossRefGoogle Scholar
  44. Parrott AC, Lees A, Garnham NJ, Jones M, Wesnes K (1998) Cognitive performance in recreational users of MDMA of ‘ecstasy’: evidence for memory deficits. J Psychopharmacol 12:79–83Google Scholar
  45. Passie T, Schneider U, Emrich HM (2002) Persisting continuous visual perception disorder in a chronic MDMA (‘ecstasy’) user. Aust N Z J Psychiatry 36(2):266Google Scholar
  46. Perrone JA, Stone LS (1998) Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation. J Neurosci 18:5958–5975Google Scholar
  47. Ricaurte GA, Markowska AL, Wenk GL, Hatzidimitriou G, Wlos J, Olton DS (1993) 3,4-Methylenedioxymethamphetamine, serotonin and memory. J Pharmacol Exp Ther 266:1097–1105Google Scholar
  48. Risser D, Stichenwirth M, Klupp N, Schneider B, Stimpfl T, Bycudilik W, Bauer G (1998) Drugs and driving in Vienna, Austria. J Forensic Sci 43(4):820–827Google Scholar
  49. Rizzo M (2004) Safe and unsafe driving. In Rizzo M, Eslinger, PJ (Ed) Principles and practice of behavioral neurology and neuropsychology. Saunders, Philadelphia, PA, pp 197–222Google Scholar
  50. Rizzo M, Dawling W (1997) Reaching with cerebral tunnel vision. Neuropsychologia 35:53–63Google Scholar
  51. Rizzo M, Nawrot M, Zihl J (1995) Motion and shape perception in cerebral akinetopsia. Brain 118(Pt 5):1105–1127Google Scholar
  52. Rizzo M, McGehee DV, Dawson JD, Anderson SN (2001) Simulated car crashes at intersections in drivers with Alzheimer disease. Alzheimer Dis Assoc Disord 15:10–20Google Scholar
  53. Rodgers J (2000) Cognitive performance amongst recreational users of “ecstasy”. Psychopharmacology (Berl) 151:19–24Google Scholar
  54. Rushton SK, Harris JM, Wann JP (1999) Steering, optic flow and the respective importance of depth and retinal motion distribution. Perception 28:255–266Google Scholar
  55. Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6:145–157Google Scholar
  56. Spreux-Varoquaux O, Alvarez JC, Berlin I, Batista G, Despierre PG, Gilton A, Cremniter D (2001) Differential abnormalities in plasma 5-HIAA and platelet serotonin concentrations in violent suicide attempters: relationships with impulsivity and depression. Life Sci 69:647–657CrossRefPubMedGoogle Scholar
  57. Verkes RJ, Gijsman HJ, Pieters MS, Schoemaker RC, de Visser S, Kuijpers M, Pennings EJ, de Bruin D, Van de Wijngaart G, Van Gerven JM, Cohen AF (2001) Cognitive performance and serotonergic function in users of ecstasy. Psychopharmacology (Berl) 153:196–202Google Scholar
  58. Verstraete A, Puddu M (2000) Evaluation of different roadside drug testing equipment. EU Contract DG VII RO-98-SC 3032, available on website
  59. Walsh JM, Buchan BJ, Leaverton PE (1997) Detection of illicit drugs in drivers. Proceedings of the 14th international conference on alcohol, drugs and traffic safety 2:485–491Google Scholar
  60. Wareing M, Fisk JE, Murphy PN (2000) Working memory deficits in current and previous users of MDMA (‘ecstasy’). Br J Psychol 91(Pt 2):181–188CrossRefPubMedGoogle Scholar
  61. White SR, Obradovic T, Imel KM, Wheaton MJ (1996) The effects of methylenedioxymethamphetamine (MDMA, “Ecstasy”) on monoaminergic neurotransmission in the central nervous system. Prog Neurobiol 49:455–479CrossRefPubMedGoogle Scholar
  62. Zeki S (1991) Cerebral akinetopsia (visual motion blindness): a review. Brain 114:811–882Google Scholar
  63. Zihl J, von Cramon D, Mai N et al (1991) Disturbance of movement vision after bilateral posterior brain damage. Brain 114:2235–2252Google Scholar
  64. Zihl JD, von Cramon, et al (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106(Pt2):313–340Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Rizzo
    • 1
    Email author
  • C. T. J. Lamers
    • 2
  • C. G. Sauer
    • 3
  • J. G. Ramaekers
    • 2
  • A. Bechara
    • 1
  • G. J. Andersen
    • 3
  1. 1.Division of Neuroergonomics and Division of Behavioral Neurology and Cognitive Neuroscience, Department of NeurologyThe University of Iowa Carver College of MedicineIowa CityUSA
  2. 2.Experimental Psychopharmacology Unit, Department of Neurocognition, Brain and Behaviour InstituteMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Department of PsychologyUniversity of CaliforniaRiversideUSA

Personalised recommendations