, Volume 174, Issue 1, pp 3–16 | Cite as

Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction

  • Patricia S. Goldman-Rakic
  • Stacy A. Castner
  • Torgny H. Svensson
  • Larry J. Siever
  • Graham V. WilliamsEmail author


Background and rationale

Reinstatement of the function of working memory, the cardinal cognitive process essential for human reasoning and judgment, is potentially the most intractable problem for the treatment of schizophrenia. Since deficits in working memory are associated with dopamine dysregulation and altered D1 receptor signaling within prefrontal cortex, we present the case for targeting novel drug therapies towards enhancing prefrontal D1 stimulation for the amelioration of the debilitating cognitive deficits in schizophrenia.


This review examines the role of dopamine in regulating cellular and circuit function within prefrontal cortex in order to understand the significance of the dopamine dysregulation found in schizophrenia and related non-human primate models. By revealing the associations among prefrontal neuronal function, dopamine and D1 signaling, and cognition, we seek to pinpoint the mechanisms by which dopamine modulates working memory processes and how these mechanisms may be exploited to improve cognitive function.

Results and conclusions

Dopamine deficiency within dorsolateral prefrontal cortex leads to abnormal recruitment of this region by cognitive tasks. Both preclinical and clinical studies have demonstrated a direct relationship between prefrontal dopamine function and the integrity of working memory, suggesting that insufficient D1 receptor signaling in this region results in cognitive deficits. Moreover, working memory deficits can be ameliorated by treatments that augment D1 receptor stimulation, indicating that this target presents a unique opportunity for the restoration of cognitive function in schizophrenia.


Spatial working memory Non-human primate Prefrontal cortex Schizophrenia D1 dopamine receptor D1 agonists 


  1. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767PubMedGoogle Scholar
  2. Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang D-R, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719PubMedGoogle Scholar
  3. Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589PubMedGoogle Scholar
  4. Akil M, Edgar CL, Pierri JN, Casali S, Lewis DA (2000) Decreased density of tyrosine hydroxylase-immunoreactive axons in the entorhinal cortex of schizophrenic subjects. Biol Psychiatry 47:361–370CrossRefPubMedGoogle Scholar
  5. Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE (2003) Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 23:2008–2013PubMedGoogle Scholar
  6. Albert KA, Hemmings HC Jr, Adamo AID, Potkin SG, Akbarian S, Sandman CA, Cotman CW, Bunney WE Jr, Greengard P (2002) Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry 59:705–712CrossRefPubMedGoogle Scholar
  7. Andén NE, Butcher SG, Corrodi H, Fuxe K, Ungerstedt U (1970) Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol 11:303–314PubMedGoogle Scholar
  8. Andreasen NC (1997) Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science 275:1586–1593PubMedGoogle Scholar
  9. Angrist B, Peselow E, Rubinstein M, Wolkin A, Rotrosen J (1985) Amphetamine response and relapse risk after depot neuroleptic discontinuation. Psychopharmacology 85:277–283Google Scholar
  10. Arnsten AFT, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151PubMedGoogle Scholar
  11. Arnsten AFT, Cai JX, Steere JC, Goldman-Rakic PS (1995) Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J Neurosci 15:3429–3439PubMedGoogle Scholar
  12. Bachevalier J, Landis LS, Walker LC, Brickson M, Mishkin M, Price DL, Cork LC (1991) Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiol Aging 12:99–111CrossRefPubMedGoogle Scholar
  13. Baldessarini RJ, Tarazi FI (1996) Brain dopamine receptors: a primer on their current status, basic and clinical. Harv Rev Psychiatry 3:301–325PubMedGoogle Scholar
  14. Bannon MJ, Whitty CJ (1997) Age-related and regional differences in dopamine transporter RNA expression in human midbrain. Neurology 48:969–977Google Scholar
  15. Bartus RT, Gleming D, Johnson HR (1978) Aging in the rhesus monkey. Debilitating effects on short-term memory. J Gerontol 33:858–871PubMedGoogle Scholar
  16. Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90:293–302PubMedGoogle Scholar
  17. Berman KF, Zec RF, Weinberger DR (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry 43:126–135PubMedGoogle Scholar
  18. Bertolino A, Knable MB, Saunders RC, Callicott JH, Kolachana B, Mattay VS, Bachevalier J, Frank JA, Egan M, Weinberger DR (1999) The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry 45:660–667PubMedGoogle Scholar
  19. Bertolino A, Breier A, Callicott JH, Adler C, Mattay VS, Shapiro M, Frank JA, Pickar D, Weinberger DR (2000) The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 22:125–132Google Scholar
  20. Bjijou Y, Stinus L, Le Moal M, Cador M (1996) Evidence for selective involvement of dopamine D1 receptors of the ventral tegmental area in the behavioral sensitization induced by intra-ventral tegmental area injections of d-amphetamine. J Pharmacol Exp Ther 277:1177–1187PubMedGoogle Scholar
  21. Bilder RM, Volavka J, Czobar P, Malhotra AK, Kennedy JL, Ni X, Goldman RS, Hoptman MJ, Sheitman B, Lindenmayer JP, Citrome L, McEvoy JP, Kunz M, Chakos M, Cooper TB, Lieberman JA (2002) Neurocognitive correlates of the COMT Val(158)Met polymorphism in schonic schizophrenia. Biol Psychiatry 52:701–707CrossRefPubMedGoogle Scholar
  22. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932PubMedGoogle Scholar
  23. Bruce CJ, Goldberg ME (1985) Primaate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635PubMedGoogle Scholar
  24. Brunel N, Wang X-J (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63–85Google Scholar
  25. Butters N, Pandya D, Sanders K, Dye P (1971) Behavioral deficits in monkeys after selective lesions within the middle third of sulcus principalis. J Comp Physiol Psychol 72:132–144Google Scholar
  26. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711PubMedGoogle Scholar
  27. Cai JX, Arnsten AFT (1997) Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 283:183–9Google Scholar
  28. Callicott JH, Bertolino A, Mattay VS, Langheim FJP, Duyn J, Coppola R, Goldberg TE, Weinberger DR (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092CrossRefPubMedGoogle Scholar
  29. Carlsson A, Lindqvist M (1963) Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144Google Scholar
  30. Carter CS, Mintun M, Nichols T, Cohen JD (1997) Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. Am J Psychiatry 154:1670–1675PubMedGoogle Scholar
  31. Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD (1998) Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 155:1285–1287PubMedGoogle Scholar
  32. Castner SA, Goldman-Rakic PS (1999a) Long-lasting psychotomimetic consequences of repeated low dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology 20:10–28Google Scholar
  33. Castner SA, Goldman-Rakic PS (1999b) Profound cognitive impairments in nonhuman primates exposed to amphetamine. Soc Neurosci Abstr 25:1563Google Scholar
  34. Castner SA, Goldman-Rakic PS (2003) Amphetamine sensitization of hallucinatory-like behaviors is dependent on prefrontal cortex in nonhuman primates. Biol Psychiatry 54:105–110CrossRefPubMedGoogle Scholar
  35. Castner SA, Goldman-Rakic PS (2004) Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci 24:1446–1450CrossRefPubMedGoogle Scholar
  36. Castner SA, Williams GV, Goldman-Rakic PS (2000) Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287:2020–2022CrossRefPubMedGoogle Scholar
  37. Castner SA, Vosler PS, Goldman-Rakic PS (2001) Lowered dopamine turnover in amphetamine-sensitized monkeys: development of a primate model of schizophrenia. Biol Psychiatr Abstr 49:124SGoogle Scholar
  38. Cepeda C, Li Z, Cromwell HC, Altemus KL, Crawford CA, Nansen EA, Ariano MA, Sibley DR, Peacock WJ, Mathern GW, Levine MS (1999) Electrophysiological and morphological analyses of cortical neurons obtained from children with catastrophic epilepsy: dopamine receptor modulation of glutamatergic responses. Dev Neurosci 21:223–235PubMedGoogle Scholar
  39. Cepeda C, Radisavljevic Z, Peacock W, Levine MS, Buchwald NA (1992) Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11:330–341PubMedGoogle Scholar
  40. Chen L, Yang CR (2002) Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex. J Neurophysiol 87:2324–2336PubMedGoogle Scholar
  41. Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW (1998) Perseveration and strategy in a novel spatial self-ordered sequencing task for nonhuman primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J Cognit Neurosci 10:332–354CrossRefGoogle Scholar
  42. Collins P, Wilkinson LS, Everitt BJ, Robbins TW, Roberts AC (2000) The effect of dopamine depletion from the caudate nucleus of the common marmoset (Callithrix jacchus) on tests of prefrontal cognitive function. Behav Neurosci 114:3–17PubMedGoogle Scholar
  43. Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125:584–594CrossRefPubMedGoogle Scholar
  44. Costa A, Peppe A, Dell’ Agnello G, Carlesimo GA, Murri L, Bonuccelli U, Caltagirone C (2003) Dopaminergic modulation of visual-spatial working memory in Parkinson’s disease. Dement Geriatr Cognit Disord 15:55–66CrossRefGoogle Scholar
  45. Creese I, Hess EJ (1986) Biomedical characteristics of D1 dopamine receptors: relationship to behavior and schizophrenia. Clin Neuropharmacol 9:14–16Google Scholar
  46. Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE (1991) The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 11:1907–1917PubMedGoogle Scholar
  47. Davidson M, Davis K (1988) A comparison of plasma homovanillic acid concentrations in schizophrenic patients and normal controls. Arch Gen Psychiatry 45:561–563PubMedGoogle Scholar
  48. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486PubMedGoogle Scholar
  49. de Keyser J, de Backer JP, Vauquelin G, Ebinger G (1990) The effect of aging on the D1 dopamine receptors in human frontal cortex. Brain Res 528:308–310CrossRefPubMedGoogle Scholar
  50. Del Arco A, Mora F (2000) Endogenous dopamine potentiates the effects of glutamate on extracellular GABA in the prefrontal cortex of the freely moving rat. Brain Res Bull 53:339–345CrossRefPubMedGoogle Scholar
  51. Dinn WM, Robbins NC, Harris CL (2001) Adult attention-deficit/hyperactivity disorder: neuropsychological correlates and clinical presentation. Brain Cognit 46:114–121Google Scholar
  52. Durstewitz D, Seamans JK (2002) The computational role of dopamine D1 receptors in working memory. Neural Network 15:561–572CrossRefPubMedGoogle Scholar
  53. Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of working memory. Nat Neurosci 3:1184–1191CrossRefPubMedGoogle Scholar
  54. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val 108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917–6922CrossRefPubMedGoogle Scholar
  55. Elevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14:1–21PubMedGoogle Scholar
  56. Fernandez-Ruiz J, Doudet DJ, Aigner TG (1995) Long-term cognitive impairment in MPTP-treated rhesus monkeys. Neuroreport 7:102–104PubMedGoogle Scholar
  57. Fernandez-Ruiz J, Doudet D, Aigner TG (1999) Spatial memory improvement by levodopa in parkinsonian MPTP-treated monkeys. Psychopharmacology 147:104–107CrossRefPubMedGoogle Scholar
  58. Fici GJ, Wu H, VonVoigtlander PF, Sethy VH (1997) D1 dopamine receptor activity of anti-parkisonian drugs. Life Sci 60:1597–1603CrossRefPubMedGoogle Scholar
  59. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349PubMedGoogle Scholar
  60. Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497PubMedGoogle Scholar
  61. Fuster JM (1997) The prefrontal cortex. Raven Press, New YorkGoogle Scholar
  62. Gao WJ, Krimer LS, Goldman-Rakic PS (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci USA 98:295–300CrossRefPubMedGoogle Scholar
  63. Giardina WJ, Williams M (2001) Adrogolide HCL (ABT-431; DAS-431), a prodrug of the dopamine D1 receptor agonist, A-86929: preclinical pharmacology and clinical data. CNS Drug Rev 7:305–316PubMedGoogle Scholar
  64. Godbout R, Mantz J, Pirot S, Glowinski J, Thierry AM (1991) Inhibitory influence of the mesocortical dopaminergic neurons on their target cells: electrophysiological and pharmacological characterization. J Pharmacol Exp Ther 258:728–738PubMedGoogle Scholar
  65. Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of physiology, the nervous system, functions of the brain. American Physiological Society, Bethesda, Md., pp 373–417Google Scholar
  66. Goldman-Rakic PS (1991) Prefrontal cortical dysfunction in working memory: the relevance of working memory. In: Caroll BJ, Barrett JE (eds) Psychopathology and the brain. Raven, New York, pp 1–23Google Scholar
  67. Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatr Clin Neurosci 6:348–357Google Scholar
  68. Goldman-Rakic PS (1999) The physiological approach: Functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 46:650–661PubMedGoogle Scholar
  69. Goldman-Rakic PS, Brown RM (1981) Regional changes in monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6:117–187CrossRefGoogle Scholar
  70. Gonon F (1997) Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 17:5972–5978PubMedGoogle Scholar
  71. Gonon F, Sundstrom L (1996) Excitatory effects of dopamine released by impulse flow in the rat nucleus accumbens in vivo. Neuroscience 75:13–18CrossRefPubMedGoogle Scholar
  72. Gonzalez-Islas C, Hablitz JJ (2003) Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex. J Neurosci 23:867–875PubMedGoogle Scholar
  73. Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215PubMedGoogle Scholar
  74. Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330PubMedGoogle Scholar
  75. Green MF (1997) Schizophrenia from a neurocognitive perspective: probing the impenetrable darkness. Pearson Allyn & Bacon, Boston, Mass.Google Scholar
  76. Guo N, Hwang DR, Lo ES, Huang YY, Laruelle M, Abi-Dargham A (2003) Dopamine depletion and in vivo binding of PET D1 receptor radioligands: implications for imaging studies in schizophrenia. Neuropsychopharmacology 28:1703–1711CrossRefPubMedGoogle Scholar
  77. Harada N, Nishiyama S, Satoh K, Fukumoto D, Kakiuchi T, Tsukada H (2002) Age-related changes in the striatal dopamine system in the living brain: a multiparametric study in conscious monkeys. Synapse 45:38–45CrossRefPubMedGoogle Scholar
  78. Henby SE, Trojanowski JQ (2003) Neuron-specific age-related decreases in dopamine receptor mRNAs. J Comp Neurol 456:176–183CrossRefPubMedGoogle Scholar
  79. Herken H, Erdal ME (2001) Catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association between symptomatology and prognosis. Psychiatr Genet 11:105–109CrossRefPubMedGoogle Scholar
  80. Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J Neurophysiol 49:1268–1284PubMedGoogle Scholar
  81. Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531PubMedGoogle Scholar
  82. Inada T, Nakamura A, Iijima Y (2003) Relationship between catechol-O-methyltransferase polymorphism and treatment-resistant schizophrenia. Am J Med Genet 120B:35–39CrossRefPubMedGoogle Scholar
  83. Jentsch JD, Redmond DE Jr, Elsworth JD, Taylor JR, Youngren KD, Roth RH (1997) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277:953–955CrossRefPubMedGoogle Scholar
  84. Jentsch JD, Taylor JR, Elsworth JD, Redmond DE Jr, Roth RH (1999a) Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits. Neuroscience 90:823–832CrossRefPubMedGoogle Scholar
  85. Jentsch JD, Taylor JR, Redmond DE Jr, Elsworth JD, Youngren KD, Roth RH (1999b) Dopamine D4 receptor antagonist reversal of subchronic phencyclidine-induced object retrieval/detour deficits in monkeys. Psychopharmacology 142:78–84CrossRefPubMedGoogle Scholar
  86. Jin LQ, Goswami S, Cai G, Zhen X, Friedman E (2003) SKF83959 selectively regulates phosphatidylinositol-linked D1 opamine receptors in rat brain. J Neurochem 85:378–386PubMedGoogle Scholar
  87. Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244PubMedGoogle Scholar
  88. Karlsson P, Farde L, Halldin C, Sedvall G (2002) PET study of D1 dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 159:761–767CrossRefPubMedGoogle Scholar
  89. Kashima H (1991) Frontal dysfunction of chronic schizophrenia—the pros and cons in neuropsychological assessment. Yakubutsu Seishin Kodo 11:83–88PubMedGoogle Scholar
  90. Kebabian JW, Beaulieu M, Itoh Y (1984) Pharmacological and biochemical evidence for the existence of two categories of dopamine receptor. Can J Neurol Sci 11:114–117PubMedGoogle Scholar
  91. Keefe RS, Roitman SE, Harvey PD, Blum CS, DuPre RL, Prieto DM, Davidson M, Davis KL (1995) A pen-and-paper human analogue of a monkey prefrontal cortex activation task: spatial working memory in patients with schizophrenia. Schizophr Res 17:25–33CrossRefPubMedGoogle Scholar
  92. Keks NA (1997) Impact of newer antipsychotics on outcomes in schizophrenia. Clin Ther 19:148–158CrossRefPubMedGoogle Scholar
  93. Khan ZU, Mrzljak L, Gutierrez A, de la Calle A, Goldman-Rakic PS (1998) Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci USA 95:7731–7736CrossRefPubMedGoogle Scholar
  94. Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci USA 98:1964–1969CrossRefPubMedGoogle Scholar
  95. Kimura K, White BH, Sidhu A (1995) Coupling of human D-1 dopamine receptors to different guanine nucleotide binding proteins. Evidence that D-1 dopamine receptors can couple to both Gs and G(o). J Biol Chem 270:14672–14678CrossRefPubMedGoogle Scholar
  96. Kirrane RM, Mitropoulou V, Nunn M, New AS, Harvey PD, Schopick F, Silverman J, Siever LJ (2000) Effects of amphetamine on visuospatial working memory performance in schizophrenia spectrum personality disorder. Neuropsychopharmacology 22:14–18CrossRefPubMedGoogle Scholar
  97. Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM (1998) Evidence for striatal dopamine release during a video game. Nature 393:266–268PubMedGoogle Scholar
  98. Koh PO, Bergson C, Undie AS, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of the D1 dopamine receptor-interacting protein, calcyon, in patients with schizophrenia. Arch Gen Psychiatry 60:311–319CrossRefPubMedGoogle Scholar
  99. Kraepelin E (1909) Dementia praecox and paraphrenia. Kraepelin’s textbook of psychiatry, 8th edn, translated by Barclay RM. Livingstone, Edinburgh, p 1919Google Scholar
  100. Kulisevsky J, Garcia-Sanchez C, Berthier ML, Barbanoj M, Pascual-Sedano B, Gironell A, Estevez-Gonzalez A (2000) Chronic effects of dopaminergic replacement on cognitive function in Parkinson’s disease: a two-follow-up study of previously untreated patients. Move Disord 15:613–636CrossRefGoogle Scholar
  101. Lachowicz JE, Sibley DR (1997) Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 81:105–113PubMedGoogle Scholar
  102. Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992) l-Dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107:394–404Google Scholar
  103. Laruelle M (2003) Dopamine transmission in the schizophrenic brain. In: Hirsch SR, Weinberger DR (eds) Schizophrenia. Blackwell, Oxford, pp 365–387Google Scholar
  104. Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13:358–371PubMedGoogle Scholar
  105. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Findago C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240PubMedGoogle Scholar
  106. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72PubMedGoogle Scholar
  107. Lee T, Seeman P, Tourtellotte WW, Farley IJ, Hornykeiwicz O (1978) Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature 274:897–950Google Scholar
  108. Levy R, Goldman-Rakic PS (1999) Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. J Neurosci 19:5149–5158PubMedGoogle Scholar
  109. Lezcano N, Mrzljak L, Eubanks S, Levenson R, Goldman-Rakic P, Bergson C (2000) Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. Science 287:1660–1664CrossRefPubMedGoogle Scholar
  110. Liddle PF (2000) Cognitive impairment in schizophrenia: its impact on social functioning. Acta Psychiatr Scand Suppl 400:11–16CrossRefPubMedGoogle Scholar
  111. Lidow MS, Goldman-Rakic PS (1994) A common action of clozapine, haloperidol, and remoxipride on D1- and D2-dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad Sci USA 91:4353–4356PubMedGoogle Scholar
  112. Lidow MS, Goldman-Rakic PS, Gallager D W, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671CrossRefPubMedGoogle Scholar
  113. Lidow MS, Elsworth JD, Goldman-Rakic PS (1997) Down-regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex by chronic treatment with antipsycotic drugs. J Pharmacol Exp Ther 281:597–603PubMedGoogle Scholar
  114. Lidow MS, Williams GV, Goldman-Rakic PS (1998) The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci 19:136–140Google Scholar
  115. Lieberman JA, Kane JM, Gadaleta D, Brenner R, Lesser MS, Kinon B.(1984) Methylphenidate challenge as a predictor of relapse in schizophrenia. Am J Psychiatry 141:633–638PubMedGoogle Scholar
  116. Liegeois JF, Ichikawa J, Meltzer HY (2002) 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947:157–165CrossRefPubMedGoogle Scholar
  117. Linner L, Wiker C, Wadenberg ML, Schalling M, Svensson TH (2002) Noradrenaline reuptake inhibition enhances the antipsychotic-like effect of raclopride and potentiates D2-blockage-induced dopamine release in the medial prefrontal cortex of the rat. Neuropsychopharmacology 27:691–698CrossRefPubMedGoogle Scholar
  118. Luine V, Bowling D, Hearns M (1990) Spatial memory deficits in aged rats: contributions of monoaminergic systems. Brain Res 537:271–278CrossRefPubMedGoogle Scholar
  119. Lysaker PH, Bell MD, Bioty S, Zito WS (1996) Performance on the Wisconsin card sorting test as a predictor of rehospitalization in schizophrenia. J Nerv Ment Dis 184:319–321CrossRefPubMedGoogle Scholar
  120. Ma SY, Ciliax BJ, Stebbins G, Jaffar S, Joyce JN, Cochran EJ, Kordower JH, Mash DC, Levey AI, Mufson EJ (1999) Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol 409:25–37CrossRefPubMedGoogle Scholar
  121. Mackay A, Iversen L, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Synder SH (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39:991–997PubMedGoogle Scholar
  122. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159:652–654CrossRefPubMedGoogle Scholar
  123. Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48:99–109Google Scholar
  124. Mattay VS, Callicott JH, Bertolino A, Heaton I, Frank JA, Coppola R, Berman KF, Goldberg TE, Weinberger DR (2000) Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage 12:268–275CrossRefPubMedGoogle Scholar
  125. Mattay VS, Tessitore A, Callicott JH, Bertolino A, Goldberg TE, Chase TN, Hyde TM, Weinberger DR (2002) Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 51:156–164CrossRefPubMedGoogle Scholar
  126. McDowell SK (1996) A role for dopamine in executive function deficits. J Head Trauma Rehabil 11:89–92Google Scholar
  127. McGurk SR, Meltzer HY (2000) The role of cognition in vocational functioning in schizophrenia. Schizophr Res 45:175–184CrossRefPubMedGoogle Scholar
  128. Mehta MA, Swainson R, Ogilvie AD, Sahakian J, Robbins TW (2001) Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers. Psychopharmacology 159:10–20Google Scholar
  129. Meltzer HY (1999) Outcome in schizophrenia: beyond symptom reduction. J Clin Psychiatry 60:3–7Google Scholar
  130. Meltzer HY, Thompson PA, Lee MA, Ranjan R (1996) Neuropsychologic deficits in schizophrenia: relation to social function and effect of antipsychotic drug treatment. Neuropsychopharmacology 14:27S–33SCrossRefPubMedGoogle Scholar
  131. Meltzer HY, Park S, Kessler R (1999) Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc Natl Acad Sci USA 96:13591–13593PubMedGoogle Scholar
  132. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271CrossRefPubMedGoogle Scholar
  133. Muller U, von Cramon DY, Pollmann S (1998) D1- versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci 18:2720–2728PubMedGoogle Scholar
  134. Muly EC III, Szigeti K, Goldman-Rakic PS (1998) D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J Neurosci 18:10553–10565PubMedGoogle Scholar
  135. Nakahara K, Hayashi T, Konishi S, Miyashita Y (2002) Functional MRI of macaque monkeys performing a cognitive set-shifting task. Science 295:1532–1536CrossRefPubMedGoogle Scholar
  136. Naoi M, Maruyama W (1999) Cell death of dopamine neurons in aging and Parkinson’s disease. Mech Ageing Dev 111:75–178CrossRefGoogle Scholar
  137. Neve KA, Neve RL (eds) The dopamine receptors. Humana Press, Totowa, New JerseyGoogle Scholar
  138. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636PubMedGoogle Scholar
  139. Owen AM, Robbins TW (1998) Attention and working memory in movements disorders. In: Jahanashi M, Brown R (eds) Neuropsychology of movement disorders. North-Holland, AmsterdamGoogle Scholar
  140. Owen AM, Beksinska M, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Sahakian BJ, Robbins TW (1993) Visuospatial memory deficits at different stages of Parkinson’s disease. Neuropsychologia 31:627–644PubMedGoogle Scholar
  141. Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 35:519–532CrossRefPubMedGoogle Scholar
  142. Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49:975–982PubMedGoogle Scholar
  143. Park S, Puschel J, Sauter BH, Rentsch M, Hell D (1999) Spatial working memory deficits and clinical symptoms in schizophrenia: a 4-month follow-up study. Biol Psychiatry 46:392–400CrossRefPubMedGoogle Scholar
  144. Paspalas CD, Goldman-Rakic PS (2002) Target-selective expression of D1 immunoreactivity in excitatory-like axons of the macaque prefrontal cortex. Soc Neurosci Abstr 336.5Google Scholar
  145. Paspalas CD, Goldman-Rakic PS (2003) Ultrastructural evidence for dopamine-regulated intracellular calcium signaling: selective association of D5 receptors with IP3-gated calcium stores in the primate neocortex. Soc Neurosci Abstr 33:469.1Google Scholar
  146. Passingham RE (1985) Memory of monkeys (Macaca mulatta) with lesions in prefrontal cortex. Behav Neurosci 99:3–21PubMedGoogle Scholar
  147. Pierri JN, Volk CL, Auh S, Sampson A, Lewis DA (2001) Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 58:466–473CrossRefPubMedGoogle Scholar
  148. Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM (1992) Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 49:857–865CrossRefPubMedGoogle Scholar
  149. Potkin SG, Basile VS, Jin Y, Masellis M, Badri F, Keator D, Wu JC, Alva G, Carreon DT, Bunney WE Jr, Fallon JH, Kennedy JL (2003) D1 receptor alleles predict PET metabolic correlates of clinical response to clozapine. Mol Psychiatry 8:109–113CrossRefPubMedGoogle Scholar
  150. Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81:1903–1916PubMedGoogle Scholar
  151. Rapp PR, Amaral DG (1989) Evidence for task-dependent memory dysfunction in the aged monkey. J Neurosci 104:876–884Google Scholar
  152. Rinne JO, Lonneberg P, Marjamaki P (1990) Age-dependent decline in human brain dopamine D1 and D2 receptors. Brain Res 508:349–352PubMedGoogle Scholar
  153. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and valuation of animal models of amphetamine psychosis. Brain Res 396:157–198PubMedGoogle Scholar
  154. Roitman SE, Mitropoulou V, Keefe RS, Silverman JM, Serby M, Harvey PD, Reynolds DA, Mohs RC, Siever LJ (2000) Visuospatial working memory in schizotypal personality disorder patients. Schizophr Res 41:447–455CrossRefPubMedGoogle Scholar
  155. Rybakowski JK, Borkowska A, Czerski PM, Hauser J (2002) Eye movement disturbances in schizophrenia and a polymorphism of catechol-O-methyltransferase gene. Psychiatry Res 113:49–57CrossRefPubMedGoogle Scholar
  156. Saunders RC, Kolachana BS, Bachevalier J, Weinberger DR (1998) Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature 393:169–171CrossRefPubMedGoogle Scholar
  157. Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950PubMedGoogle Scholar
  158. Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515–528PubMedGoogle Scholar
  159. Sawaguchi T, Matsumura M, Kubota K (1988) Dopamine enhances the neuronal activity of spatial short-term memory task in the primate prefrontal cortex. Neurosci Res 5:465–473CrossRefPubMedGoogle Scholar
  160. Sawaguchi T, Matsumura M, Kubota K (1990) Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1401–1412PubMedGoogle Scholar
  161. Schneider JS, Pope-Coleman A (1995) Cognitive deficits precede motor deficits in a slowly progressing model of parkinsonism in monkeys. Neurodegeneration 4:245–255PubMedGoogle Scholar
  162. Schneider JS, Roeltgen DP (1993) Delayed matching-to-sample, object retrieval, and discrimination reversal deficits in chronic low dose MPTP-treated monkeys. Brain Res 615:351–354CrossRefPubMedGoogle Scholar
  163. Schneider JS, Sun ZQ, Roeltgen DP (1994a) Effects of dopamine agonists on delayed response performance in chronic low-dose MPTP-treated monkeys. Pharmacol Biochem Behav 48:235–240Google Scholar
  164. Schneider JS, Sun ZQ, Roeltgen DP (1994b) Effects of dihydrexidine, a full D-1 dopamine receptor agonist, on delayed response performance in chronic low dose MPTP-treated monkeys. Brain Res 663:140–144CrossRefPubMedGoogle Scholar
  165. Schneider JS, Tinker JP, Van Velson M, Manzaghi F, Lloyd GK (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 290:731–739PubMedGoogle Scholar
  166. Schneider JS, Tinker JP, Menzaghi G, Lloyd GK (2003) The subtype-selective nicotinic acetylcholine receptor agonist SIB-1553A improves both attention and memory components of a spatial working memory task in chronic low dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J Pharmacol Exp Ther 306:401–406CrossRefPubMedGoogle Scholar
  167. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263PubMedGoogle Scholar
  168. Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21:3628–3638PubMedGoogle Scholar
  169. Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152PubMedGoogle Scholar
  170. Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47:27–38Google Scholar
  171. Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52:805–818PubMedGoogle Scholar
  172. Sesack SR, Hawrylak VA, Melchitzky DS, Lewis DA (1998) Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cereb Cortex 8:614–622CrossRefPubMedGoogle Scholar
  173. Sevy S, Davidson M (1995) The cost of cognitive impairment in schizophrenia. Schizophr Res 17:1–3CrossRefPubMedGoogle Scholar
  174. Shallice T, Marzocchi GM, Coser S, Del Savio M, Meuter RF, Rumiati RI (2002) Executive function profile of children with attention deficit hyperactivity disorder. Dev Neuropsychol 21:43–71CrossRefPubMedGoogle Scholar
  175. Sidhu A, Kimura K, Uh M, White BH, Patel S (1998) Multiple coupling of human D5 dopamine receptors to guanine nucleotide binding proteins Gs and Gz. J Neurochem 70:2459–2467PubMedGoogle Scholar
  176. Siegel BV, Trestman R, O’Flaithbheartaigh S, Mitropoulou V, Amin F, Kirrane R, Silverman J, Schmeidler J, Keefe RS, Siever LJ (1996) d-Amphetamine challenge effects on Wisconsin Card Sort Test: performance in schizotypal personality disorder. Schizophr Res 20:29–32CrossRefPubMedGoogle Scholar
  177. Smiley JF, Goldman-Rakic PS (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. Cereb Cortex 3:223–238PubMedGoogle Scholar
  178. Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci USA 91:5720–5724PubMedGoogle Scholar
  179. Smith TE, Hull JW, Romanelli S, Fertuck E, Weiss KA (1999a) Symptoms and neurocognition as rate limiters in skills training for psychotic patients. Am J Psychiatry 156:1817–1818PubMedGoogle Scholar
  180. Smith TE, Hull JW, Goodman M, Hedayat-Harris A, Willson DF, Israel LM, Munich RL (1999b) The relative influence of symptoms, insight, and neurocognition on social adjustment in schizophrenia and schizoaffective disorder. J Nerv Ment Dis 187:102–108CrossRefPubMedGoogle Scholar
  181. Stevens AA, Goldman-Rakic PS, Gore JC, Fulbright RK, Wexler BE (1998) Cortical dysfunction in schizophrenia during auditory word and tone working memory demonstrated by functional magnetic imaging. Arch Gen Psychiatry 55:1097–1103CrossRefPubMedGoogle Scholar
  182. Suhara T, Fukuda H, Inoue T, Suzuki K, Yamasaki T, Tateno Y (1991) Age-related changes in D1 dopamine receptors measured by positron emission tomography. Psychopharmacology 103:41–45PubMedGoogle Scholar
  183. Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397PubMedGoogle Scholar
  184. Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Rev 31:320–329PubMedGoogle Scholar
  185. Tanaka S (2002) Dopamine controls fundamental cognitive operations of multi-target spatial working memory. Neural Networks 15:573–582CrossRefPubMedGoogle Scholar
  186. Taylor JR, Elsworth JD, Roth RH, Slaydek JR Jr, Redmond DE Jr (1990) Cognitive and motor deficits in the acquisition of an object retrieval/detour task in MPTP-treated monkeys. Brain 113:617–637PubMedGoogle Scholar
  187. Trestman RL, Keefe RS, Mitropoulou V, Harvey PD, deVegvar ML, Lees-Roitman S, Davidson M, Aronson A, Silverman J, Siever LJ (1995) Cognitive function and biological correlates of cognitive performance in schizotypal personality disorder. Psychiatry Res 59:127–136CrossRefPubMedGoogle Scholar
  188. Vezina P (1996) D1 dopamine receptor stimulation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. J Neurosci 16:2411–2420PubMedGoogle Scholar
  189. Vincent SL, Khan Y, Benes FM (1993) Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. J Neurosci 13:2551–2564PubMedGoogle Scholar
  190. Walters AS, Mandelbaum DE, Lewin DS, Kugler S, England SJ, Miller M (2000) Dopaminergic therapy in children with restless legs/periodic limb movements in sleep and ADHD: dopaminergic therapy study group. Pediatr Neurol 22:182–186CrossRefPubMedGoogle Scholar
  191. Wang HY, Undie AS, Friedman E (1995) Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol Pharmacol 48:988-994PubMedGoogle Scholar
  192. Wang J, O’Donnell P (2001) D(1) dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex 11:452–462CrossRefPubMedGoogle Scholar
  193. Wang Y, Chan GL, Holden JE, Dobko T, Mak E, Schulzer M, Huser JM, Snow BJ, Ruth TJ, Calne DB, Stoessl AJ (1998) Age-dependent decline in dopamine D1 receptors in human brain: a PET study. Synapse 30:56–61CrossRefPubMedGoogle Scholar
  194. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669PubMedGoogle Scholar
  195. Weinberger DR, Gallhofer B (1997) Cognitive function in schizophrenia. Int Clin Psychopharmacol Suppl 4:S29–36Google Scholar
  196. Weinberger DR, Laruelle M (2001) Neurochemical and neuropharmacological imaging in schizophrenia. In: Davis KL, Charney DS, Coyle JT, Nemeroff C (eds) Neuropharmacology: the fifth generation of progress. Lippincott, Williams, and Wilkins, New YorkGoogle Scholar
  197. Weinberger DR, Berman KF, Zec RF (1986) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–125PubMedGoogle Scholar
  198. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50:825–844CrossRefPubMedGoogle Scholar
  199. Wenk GL, Pierce DJ, Struble RG, Price DL, Cork LC (1989) Age-related changes in multiple neurotransmitter systems in the monkey brain. Neurobiol Aging 10:11–19PubMedGoogle Scholar
  200. White F (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 19:405–436PubMedGoogle Scholar
  201. Wilkinson LS (1997) The nature of interactions involving prefrontal and striatal dopamine systems. J Psychopharmacol 11:143–150PubMedGoogle Scholar
  202. Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:549–550CrossRefPubMedGoogle Scholar
  203. Williams SM, Goldman-Rakic PS (1993) Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb Cortex 3:199–222PubMedGoogle Scholar
  204. Williams GV, Millar J (1990) Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum. Neurosci 39:1–16CrossRefGoogle Scholar
  205. Wong DF, Wagner HN Jr, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, et al. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naïve schizophrenics. Science 234:1558–1563PubMedGoogle Scholar
  206. Wonodi I, Stine OC, Mitchell BD, Buchanan RW, Thaker GK (2003) Association between Val108/158 Met polymorphism of the COMT gene and schizophrenia. Am J Med Genet 120B:47–50CrossRefPubMedGoogle Scholar
  207. Yang CR, Seamans JK (1996) Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci 16:1922–1935PubMedGoogle Scholar
  208. Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161–194Google Scholar
  209. Youngren KD, Inglis FM, Pivirotto PJ, Jedema HP, Bradberry CW, Goldman-Rakic PS, Roth RH, Moghaddam B (1999) Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal cortex compared with the caudate nucleus. Neuropsychopharmacology 20:403–412Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Patricia S. Goldman-Rakic
    • 1
  • Stacy A. Castner
    • 2
    • 3
  • Torgny H. Svensson
    • 4
  • Larry J. Siever
    • 5
  • Graham V. Williams
    • 2
    • 3
    Email author
  1. 1.Department of NeurobiologyYale University School of MedicineNew HavenUSA
  2. 2.Departments of Psychiatry and Biopharmaceutical SciencesUniversity of Illinois at ChicagoChicagoUSA
  3. 3.MIICRO Inc.ChicagoUSA
  4. 4.Department of Physiology and Pharmacology, Section of NeuropsychopharmacologyKarolinska InstitutetStockholmSweden
  5. 5.Department of PsychiatryMount Sinai School of MedicineNew YorkUSA

Personalised recommendations