Numerische Mathematik

, Volume 95, Issue 3, pp 527–550 | Cite as

A multilevel discontinuous Galerkin method

Original Paper

Abstract.

A variable V-cycle preconditioner for an interior penalty finite element discretization for elliptic problems is presented. An analysis under a mild regularity assumption shows that the preconditioner is uniform. The interior penalty method is then combined with a discontinuous Galerkin scheme to arrive at a discretization scheme for an advection-diffusion problem, for which an error estimate is proved. A multigrid algorithm for this method is presented, and numerical experiments indicating its robustness with respect to diffusion coefficient are reported.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Arnold, F. Brezzi, B. Cockburn, D. Marini. Discontinuous Galerkin methods for elliptic problems. In: B. Cockburn, G. Karniadakis, C.-W. Shu (eds.) First International Symposium on Discontinuous Galerkin Methods, volume 11 of Lecture Notes in Computational Science and Engineering, pages 89-101. Springer Verlag (2000)Google Scholar
  2. 2.
    D.N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4): 742-760 (1982)Google Scholar
  3. 3.
    I. Babuška. The finite element method with penalty. Math. Comp. 27: 221-228 (1973)Google Scholar
  4. 4.
    W. Bangerth, G. Kanschat. Concepts for object-oriented finite element software - the deal.ii library. Preprint 99-43, SFB 359, Universität Heidelberg, October (1999)Google Scholar
  5. 5.
    W. Bangerth, G. Kanschat. deal.II Differential Equations Analysis Library, Technical Reference, October (1999) +http://gaia.iwr.uni-heidelberg.de/deal/+Google Scholar
  6. 6.
    J. H. Bramble. Multigrid Methods. Number 294 in Pitman research notes in mathematics series. Longman Scientific & Technical, Harlow, UK (1993)Google Scholar
  7. 7.
    J.H. Bramble, R.E. Ewing, J.E. Pasciak, J. Shen. The analysis of multigrid algorithms for cell centered finite difference methods. Adv. Comput. Math. 5(1): 15-29 (1996)Google Scholar
  8. 8.
    J.H. Bramble, J.E. Pasciak. The analysis of smoothers for multigrid algorithms. Math. Comp. 58(198): 467-488 (1992)Google Scholar
  9. 9.
    J.H. Bramble, J.E. Pasciak, J. Xu. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comp. 56(193): 1-34 (1991)Google Scholar
  10. 10.
    A. Brandt. Multigrid techniques: 1984 guide with applications to fluid dynamics. Gesellschaft für Mathematik und Datenverarbeitung m.b.H., Bonn, St. Augustin (1984)Google Scholar
  11. 11.
    P. Castillo, B. Cockburn, I. Perugia, D. Schötzau. An a priori error analysis of the LDG method for elliptic problems. SIAM J. Numer. Anal. (2000) To appearGoogle Scholar
  12. 12.
    B. Cockburn. Discontinuous Galerkin methods for convection-dominated problems. In: High-order methods for computational physics, pp. 69-224. Springer, Berlin (1999)Google Scholar
  13. 13.
    J. Douglas, Jr., T. Dupont. Interior penalty procedures for elliptic and parabolic Galerkin methods. In: R. Glowinski, J. L. Lions (eds.) Computing methods in applied sciences, pp. 207-216. (Lecture Notes in Phys) Vol. 58, Springer, Berlin (1976) Second International Symposium on Computing Methods in Applied Sciences and Engineering, held at Versailles (Dec. 1975)Google Scholar
  14. 14.
    S.C. Eisenstat, H.C. Elman, M.H. Schultz. Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2): 345-357 (1983)Google Scholar
  15. 15.
    X. Feng, O. Karakashian. Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. Preprint (2001)Google Scholar
  16. 16.
    P. Grisvard. Elliptic Problems in Nonsmooth Domains. Number 24 in Monographs and Studies in Mathematics. Pitman Advanced Publishing Program, Marshfield, Massachusetts (1985)Google Scholar
  17. 17.
    W. Hackbusch. Multi-Grid Methods and Applications. Number 4 in Springer series in Computational Mathematics. Berlin, Springer (1985)Google Scholar
  18. 18.
    W. Hackbusch, T. Probst. Downwind Gauss-Seidel smoothing for convection dominated problems. Numer. Linear Algebra Appl. 4(2): 85-102 (1997)Google Scholar
  19. 19.
    P. Houston, C. Schwab, E. Süli. Discontinuous hp-finite element methods for advection-diffusion problems. Technical Report 00/15, Oxford University Computing Lab (2000)Google Scholar
  20. 20.
    P. Houston, C. Schwab, E. Süli. Stabilized hp-finite element methods for first-order hyperbolic problems. SIAM J. Numer. Anal. 37(5): 1618-1643 ((electronic) 2000)Google Scholar
  21. 21.
    C. Johnson. Numerical solution of partial differential equations by the finite element method. Cambridge, Cambridge University Press (1995)Google Scholar
  22. 22.
    C. Johnson, J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46(173): 1-26 (1986)Google Scholar
  23. 23.
    R.B. Kellog. Interpolation between subspaces of a Hilbert space. Technical Note BN-719, University of Maryland, College Park, Maryland, November (1971)Google Scholar
  24. 24.
    P. Lasaint, P.-A. Raviart. On a finite element method for solving the neutron transport equation. In: C. de Boor (ed.) Mathematical aspects of finite elements in partial differential equations, pp. 89-123. Academic Press New York (1974). Proceedings of a symposium conducted by Math. Res. Center, Univ. of Wisconsin-Madison (in April, 1974)Google Scholar
  25. 25.
    C. Lasser, A. Toselli. An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems. Technical Report 2000-12 Eidgenössische Technische Hochschule, CH-8092 Zürich, November (2000)Google Scholar
  26. 26.
    I. Persson, K. Samuelsson, A. Szepessy. On the convergence of multigrid methods for flow problems. Electron. Trans. Numer. Anal. 8: 46-87 ((electronic) 1999)Google Scholar
  27. 27.
    C. Pflaum. Robust convergence of multilevel algorithms for convection-diffusion equations. SIAM J. Numer. Anal. 37(2): 443-469 ((electronic) 2000)Google Scholar
  28. 28.
    B. Riviére, M.F. Wheeler, V. Girault. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3(3-4): 337-360 ((2000) 1999)Google Scholar
  29. 29.
    T. Rusten, P. S. Vassilevski, R. Winther. Interior penalty preconditioners for mixed finite element approximations of elliptic problems. Math. Comp. 65(214): 447-466 (1996)Google Scholar
  30. 30.
    L.R. Scott, S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190): 483-493 (1990)Google Scholar
  31. 31.
    M.F. Wheeler. An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15(1): 152-161 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA
  2. 2.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergGermany

Personalised recommendations