Advertisement

Numerische Mathematik

, Volume 92, Issue 2, pp 233–256 | Cite as

A posteriori error estimates for nonconforming finite element methods

  • Carsten Carstensen
  • Sören Bartels
  • Stefan Jansche
Original article

Summary.

Computable a posteriori error bounds for a large class of nonconforming finite element methods are provided for a model Poisson-problem in two and three space dimensions. Besides a refined residual-based a posteriori error estimate, an averaging estimator is established and an \(L^2\)-estimate is included. The a posteriori error estimates are reliable and efficient; the proof of reliability relies on a Helmholtz decomposition.

Mathematics Subject Classification (1991): 65N30, 65R20, 73C50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Carsten Carstensen
    • 1
  • Sören Bartels
    • 2
  • Stefan Jansche
    • 2
  1. 1.Institute for Applied Mathematics and Numerical Analysis, Vienna University of Technology, Wiedner Hauptstraße 8–10, A-1040 Vienna, Austria; e-mail: Carsten.Carstensen@tuwien.ac.at AT
  2. 2.Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, 24098 Kiel, Germany; e-mail: sba@numerik.uni-kiel.de DE

Personalised recommendations