Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis

Abstract

We define a conforming B-spline discretisation of the de Rham complex on multipatch geometries. We introduce and analyse the properties of interpolation operators onto these spaces which commute w.r.t. the surface differential operators. Using these results as a basis, we derive new convergence results of optimal order w.r.t. the respective energy spaces and provide approximation properties of the spline discretisations of trace spaces for application in the theory of isogeometric boundary element methods. Our analysis allows for a straight forward generalisation to finite element methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

\(H^s(\varOmega )\) :

For \(s>0\), standard Sobolev spaces, for \(s<0\) corresponding dual space

\(H^s(\mathrm d,\varOmega )\) :

Sobolev spaces w.r.t. a graph norm induced by \(\mathrm { d}\)

\(\pmb {H}_\times ^s\) :

Vectorial trace spaces

\(\pmb {H}_\times ^{s}({\text {div}}_\varGamma ,\varGamma )\) :

Trace of \(\pmb {H}^s({{\,\mathrm{{curl}}\,}},\varOmega )\) w.r.t. \(\pmb {\gamma }_t\)

\(H_\text {pw}^s(\varGamma )\) :

Sobolev space of patchwise regularity

\(\pmb {H}_\text {pw}^s({\text {div}}_\varGamma ,\varGamma )\) :

\(\pmb {H}^{0}({\text {div}}_\varGamma ,\varGamma )\) with a patchwise regularity of \({\pmb {H}}^{s}({\text {div}}_\varGamma ,\varGamma _j)\)

\(\pmb {H}_*^s({\text {div}}_\varGamma ,\varGamma )\) :

\(\pmb {H}_\times ^{-1/2}({\text {div}}_\varGamma ,\varGamma )\) with a patchwise regularity of \({\pmb {H}}^{s}({\text {div}}_\varGamma ,\varGamma _j)\)

\(K^s_j\) :

Kernel of \(\gamma _{\pmb {n},j}\) w.r.t. \(\pmb {H}^s({\text {div}},\varGamma _j)\)

\(K^{\mathbb {S}}_j\) :

Kernel of \(\gamma _{\pmb {n},j}\) w.r.t. \(\pmb {{\mathbb {S}}}^1_{\pmb {p},\pmb {\varXi }}(\varGamma )\)

\((K^s_j)'\) :

Dual of \(K^s_j\) w.r.t. \(\pmb {H}^0({\text {div}}_\varGamma ,\varGamma )\)

p :

Polynomial degree

\(\pmb {p}\) :

List of pairs of polynomial degrees

\(\varXi \) :

Knot vector

\(\pmb {\varXi }\) :

List of pairs of knot vectors

\(b_i^p\) :

B-spline basis function

\(S_p(\varXi )\) :

B-spline space of degree p over knot vector \(\varXi \)

\(S_{p_1,\ldots ,p_\ell }(\varXi _1,\ldots ,\varXi _\ell )\) :

Tensor product B-spline space of degrees \(p_1,\ldots ,p_\ell \) over knot vectors \(\varXi _1,\ldots ,\varXi _\ell \)

\({\tilde{I}}\),\(\tilde{Q}\) :

Support extension of IQ

\({\mathbb {S}}^0_{\pmb {p},\pmb {\varXi }}(\varGamma )\) :

\(H^1(\varGamma )\) conforming spline space in the physical domain on a multipatch geometry \(\varGamma \)

\(\pmb {{\mathbb {S}}}_{\pmb {p},\pmb {\varXi }}^1(\varGamma )\) :

\(\pmb {H}({\text {div}}_\varGamma ,\varGamma )\) conforming spline space in the physical domain on a multipatch geometry \(\varGamma \)

\({\mathbb {S}}^2_{\pmb {p},\pmb {\varXi }}(\varGamma )\) :

\(L^2(\varGamma )\) conforming spline space in the physical domain on a multipatch geometry \(\varGamma \)

\(\tilde{\varPi }_{p,\varXi }\) :

One-dimensional multipatch quasi-interpolation operator

\(\tilde{\varPi }^\partial _{p,\varXi }\) :

Commuting one-dimensional multipatch quasi-interpolation operator

\(\tilde{\varPi }_{\pmb {p},\pmb {\varXi }}^0\) :

\(H^1((0,1)^2)\) conforming, commuting multipatch quasi-interpolation operator for the reference domain

\(\tilde{\pmb {\varPi }}_{\pmb {p},\pmb {\varXi }}^1\) :

\(\pmb {H}({\text {div}},(0,1)^2)\) conforming, commuting multipatch quasi-interpolation operator for the reference domain

\(\tilde{\varPi }_{\pmb {p},\pmb {\varXi }}^2\) :

\(L^2((0,1)^2)\) conforming, commuting multipatch quasi-interpolation operator for the reference domain

\({{\tilde{\varPi }}^0_\varGamma }\) :

\(H^1(\varGamma )\) conforming, commuting multipatch quasi-interpolation operator for the physical domain

\({\pmb {\tilde{\varPi }}^1_\varGamma }\) :

\(\pmb {H}({\text {div}},\varGamma )\) conforming, commuting multipatch quasi-interpolation operator for the physical domain

\({{\tilde{\varPi }}^2_\varGamma }\) :

\(L^2(\varGamma )\) conforming, commuting multipatch quasi-interpolation operator for the physical domain

\(\pi \), \(\pi _j\) :

Quasi-optimal \(\pmb {H}({\text {div}}_\varGamma ,\varGamma )\) projection, defined patchwise via \(\pi _j\)

\(\mathscr {P}_s\) :

Orthogonal projection with respect to the \(H^s(\varGamma )\) scalar product

\(\mathscr {P}_{{\text {div}}}\) :

Orthogonal projection with respect to the \(\pmb {H}^0({\text {div}}_\varGamma ,\varGamma )\) scalar product

\(\mathscr {P}_\times \) :

Orthogonal projection with respect to the \(\pmb {H}^{-1/2}_\times ({\text {div}}_\varGamma ,\varGamma )\) scalar product

\(\pmb {F}_j\) :

Geometry mapping

\(\iota _*(\pmb {F})\) :

For \(* = 0,1,2,\) pull-backs induced by a given diffeomorphism \(\pmb {F}\)

\(\kappa (\pmb {x})\) :

Surface measure at a given point \(\pmb {x}\)

\(\pmb {n}_{\pmb {x}}\) :

Outer unit normal at \(\pmb {x}\)

\(\gamma _0\) :

Dirichlet trace

\(\pmb {\gamma }_t\) :

Rotated tangential trace operator

\(\pmb {\gamma }_0\) :

Vectorial Dirichlet trace operator

\(\gamma _{\pmb {n}}\) :

Normal trace operator

\(\gamma _{\pmb {n},j}\) :

Inter-patch normal trace on \(\partial \varGamma _j\)

\({\mathbb {K}}\) :

Either \(\mathbb R\) or \(\mathbb C\)

\(\lesssim \) :

\(\le \) up to a constant independent of h

\(\simeq \) :

\(=\) up to a constant independent of h

h :

Mesh size

i :

Index referring to a specific basis function, knot or mesh element

j :

Index referring to a specific patch

k :

Dimension of a discrete space on [0, 1]

\(\ell \) :

Spatial dimension

s, t, r :

Index referring to the regularity of a Sobolev space

References

  1. 1.

    Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics. Academic Press, New York (1978)

  2. 2.

    Beer, G., Mallardo, V., Ruocco, E., Marussig, B., Zechner, J., Dünser, C., Fries, T.P.: Isogeometric boundary element analysis with elasto-plastic inclusions. Part 2: 3-d problems. Comput. Methods Appl. Mech. Eng. 315(Supplement C), 418–433 (2017)

  3. 3.

    da Veiga, L.B., Buffa, A., Sangalli, G., Vázquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)

  4. 4.

    Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1976)

  5. 5.

    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

  6. 6.

    Bontinck, Z., Corno, J., De Gersem, H., Kurz, S., Pels, A., Schöps, S., Wolf, F., de Falco, C., Dölz, J., Vázquez, R., Römer, U.: Recent advances of isogeometric analysis in computational electromagnetics. ICS Newsletter 24(3) (2017). Available as preprint via arXiv, e-print 1709.06004

  7. 7.

    Bossavit, A.: Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEEE Proc. 135(8), 493–500 (1988)

  8. 8.

    Bossavit, A.: Computational Electromagnetism: Variational Formulations, Complementarity Edge Elements. Academic Press, San Diego (1998)

  9. 9.

    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2008)

  10. 10.

    Buffa, A., Christiansen, S.: The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math. 94(2), 229–267 (2003)

  11. 11.

    Buffa, A., Ciarlet, P.: On traces for functional spaces related to Maxwell’s equations part I: an integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24(1), 9–30 (2001)

  12. 12.

    Buffa, A., Ciarlet, P.: On traces for functional spaces related to Maxwell’s equations part II: hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24(1), 31–48 (2001)

  13. 13.

    Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl,\(\Omega \)) in Lipschitz domains. J. Math. Anal. Appl. 276(2), 845–867 (2002)

  14. 14.

    Buffa, A., Hiptmair, R.: Galerkin boundary element methods for electromagnetic scattering. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds.) Topics in Computational Wave Propagation, pp. 83–124. Springer, Berlin (2003)

  15. 15.

    Buffa, A., Rivas, J., Sangalli, G., Vázquez, R.: Isogeometric discrete differential forms in three dimensions. SIAM J. Numer. Anal. 49(2), 818–844 (2011)

  16. 16.

    Buffa, A., Sangalli, G., Vázquez, R.: Isogeometric analysis in electromagnetics: B-splines approximation. Comput. Methods Appl. Mech. Eng. 199, 1143–1152 (2010)

  17. 17.

    Buffa, A., Vázquez, R.H., Sangalli, G., da Veiga, L.B.: Approximation estimates for isogeometric spaces in multipatch geometries. Numer. Methods Partial Differ. Equ. 31(2), 422–438 (2015)

  18. 18.

    Ciarlet, P.G.: The finite element method for elliptic problems. In: O’Malley, R.E. (ed.) Classics in Applied Mathematics, vol. 40, 2nd edn. Society for Industrial Mathematics, Philadelphia (2002)

  19. 19.

    Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151(3), 221–276 (2000)

  20. 20.

    Costabel, M., Dauge, M., Demkowicz, L.: Polynomial extension operators for \({H}^1\), \({H}(\operatorname{curl})\) and \({H}(\operatorname{div})\)-spaces on a cube. Math. Comput. 77, 1967–1999 (2008)

  21. 21.

    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)

  22. 22.

    D’Haeseleer, W., Hitchon, W., Callen, J., Shohet, J.: Flux Coordinates and Magnetic Field Structure: A Guide to a Fundamental Tool of Plasma Structure. Springer Series in Computational Physics. Springer, Berlin (1991)

  23. 23.

    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

  24. 24.

    Dölz, J., Harbrecht, H., Kurz, S., Schöps, S., Wolf, F.: A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems. Comput. Methods Appl. Mech. Eng. 330(Supplement C), 83–101 (2018)

  25. 25.

    Dölz, J., Harbrecht, H., Peters, M.: An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces. Int. J. Numer. Methods Eng. 108(13), 1705–1728 (2016)

  26. 26.

    Gerritsma, M.: Edge functions for spectral element methods. In: Hesthaven, J.S., Rønquist, E.M. (eds.) Lecture Notes in Computational Science and Engineering, pp. 199–207. Springer, Berlin (2010)

  27. 27.

    Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986)

  28. 28.

    Hackbusch, W., Börm, S.: \(\cal{H}^2\)-matrix approximation of integral operators by interpolation. Appl. Numer. Math. 43(1), 129–143 (2002)

  29. 29.

    Harbrecht., H.: Wavelet Galerkin schemes for the boundary element method in three dimensions. Ph.D. thesis, Technische Universität Chemnitz (2001)

  30. 30.

    Harbrecht, H., Peters, M.: Comparison of fast boundary element methods on parametric surfaces. Comput. Methods Appl. Mech. Eng. 261, 39–55 (2013)

  31. 31.

    Harbrecht, H., Randrianarivony, M.: From computer aided design to wavelet BEM. Comput. Vis. Sci. 13, 69–82 (2010)

  32. 32.

    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

  33. 33.

    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

  34. 34.

    Kurz, S., Rain, O., Rjasanow, S.: Fast boundary element methods in computational electromagnetism. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis: Mathematical Aspects and Applications, pp. 249–279. Springer, Berlin (2007)

  35. 35.

    Lee, E.T.Y.: Marsden’s identity. Comput. Aided Geom. Des. 13(4), 287–305 (1996)

  36. 36.

    Marussig, B., Zechner, J., Beer, G., Fries, T.P.: Fast isogeometric boundary element method based on independent field approximation. Comput. Methods Appl. Mech. Eng. 284, 458–488 (2015)

  37. 37.

    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

  38. 38.

    Monk, P.: An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations. J. Comput. Appl. Math. 47(1), 101–121 (1993)

  39. 39.

    Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

  40. 40.

    Nédélec, J.C.: Mixed finite elements in \({R}^3\). Numer. Math. 35(3), 315–341 (1980)

  41. 41.

    Peterson, A.F.: Mapped vector basis functions for electromagnetic integral equations. Synth. Lect. Comput. Electromagn. 1(1), 1–124 (2006)

  42. 42.

    Peterson, A.F., Aberegg, K.R.: Parametric mapping of vector basis functions for surface integral equation formulations. Appl. Comput. Electromagn. Soc. J. 10, 107–115 (1995)

  43. 43.

    Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

  44. 44.

    Quarteroni, A., Valli, A., Valli, P.: Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scie. Clarendon Press, Oxford (1999)

  45. 45.

    Sauter, S., Schwab, C.: Boundary Element Methods. Springer Series in Computational Mathematics. Springer, Berlin (2010)

  46. 46.

    Schumaker, L.L.: Spline functions: Basic theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2007)

  47. 47.

    Simpson, R.N., Bordas, S.P.A., Trevelyan, J., Rabczuk, T.: A two-dimensional isogeometric boundary element method for elastostatic analysis. Comput. Methods Appl. Mech. Eng. 209–212, 87–100 (2012)

  48. 48.

    Simpson, R.N., Liu, Z., Vázquez, R., Evans, J.A.: An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations. J. Comput. Phys. 362, 264–289 (2018)

  49. 49.

    Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York (2008)

  50. 50.

    Weggler, L.: High order boundary element methods. Ph.D. thesis, Universität des Saarlandes, Saarbrücken (2011)

  51. 51.

    Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

  52. 52.

    Xu, J., Zikatanov, L.: Some observations on Babuška and Brezzi theories. Numer. Math. 94(1), 195–202 (2002)

  53. 53.

    Zaglmayr, S.: High order finite element methods for electromagnetic field computation. Ph.D. thesis, Linz, Austria (2006)

Download references

Acknowledgements

The authors want to express their sincere gratitude to Jacopo Corno, who provided feedback on early versions of the draft. Moreover, we want to thank the anonymous referee, whose review was of exceptional quality and helped us to improve the manuscript significantly. The work of A. Buffa and R. Vázquez was partially supported by the European Research Council through the H2020 ERC Advanced Grant no. 694515 CHANGE. J. Dölz is an Early Postdoc.Mobility fellow, funded by the Swiss National Science Foundation through the project 174987 H-Matrix Techniques and Uncertainty Quantification in Electromagnetism, the Excellence Initiative of the German Federal and State Governments and the Graduate School of Computational Engineering at TU Darmstadt. The work of F. Wolf is supported by DFG Grants SCHO1562/3-1 and KU1553/4-1 within the project Simulation of superconducting cavities with isogeometric boundary elements (IGA-BEM), the Excellence Initiative of the German Federal and State Governments and the Graduate School of Computational Engineering at TU Darmstadt.

Author information

Correspondence to Felix Wolf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

All the presented estimates are applicable to achieve three-dimensional estimates as well, going back to [3, 15]. We will briefly go over the construction and state the result corresponding to Theorem 2.

For \(p>0\) we define the spline complex on \([0,1]^3\) via

$$\begin{aligned} {\mathbb {S}}^0_{\pmb {p},\pmb {\varXi }}([0,1]^3)&:=S_{p_1,p_2,p_3}(\varXi _1,\varXi _2,\varXi _3),\nonumber \\ \pmb {{\mathbb {S}}}^1_{\pmb {p},\pmb {\varXi }}([0,1]^3)&:=S_{p_1-1,p_2,p_3}(\varXi _1',\varXi _2,\varXi _3)\nonumber \\&\quad \times \, S_{p_1,p_2-1,p_3}(\varXi _1,\varXi _2',\varXi _3) \nonumber \\&\quad \times \, S_{p_1,p_2,p_3-1}(\varXi _1,\varXi _2,\varXi _3'), \end{aligned}$$
(42)
$$\begin{aligned} \pmb {{\mathbb {S}}}^2_{\pmb {p},\pmb {\varXi }}([0,1]^3)&:=S_{p_1,p_2-1,p_3-1}(\varXi _1,\varXi _2',\varXi _3')\nonumber \\&\quad \times \, S_{p_1-1,p_2,p_3-1}(\varXi _1',\varXi _2,\varXi _3')\nonumber \\&\quad \times \, S_{p_1-1,p_2-1,p_3}(\varXi _1',\varXi _2',\varXi _3), \nonumber \\ {\mathbb {S}}^3_{\pmb {p},\pmb {\varXi }}([0,1]^3)&:=S_{p_1-1,p_2-1,p_3-1}(\varXi _1',\varXi _2',\varXi _3'). \end{aligned}$$
(43)

Let \(f_0,\)\(\pmb {f}_1,\)\(\pmb {f}_2,\)\(f_3\) be sufficiently smooth. We can use the transformations

$$\begin{aligned} \iota _0(\pmb {F})(f_0)&:=f_0\circ \pmb {F},\quad \iota _1(\pmb {F})(\pmb {f}_1):=(d\pmb {F})^\top (\pmb {f}_1\circ \pmb {F}),\nonumber \\ \iota _2(\pmb {F})(\pmb {f}_2)&:=\det (d\pmb {F}) (d\pmb {F})^{-1} (\pmb {f}_2\circ \pmb {F}),\quad \iota _3(\pmb {F})(f_3):=\det (d\pmb {F}) (f_3\circ \pmb {F}), \end{aligned}$$
(44)

to define the corresponding spaces in the single patch physical domain as in (3), cf. [32]. Now, the projections \(\tilde{\varPi }_{\pmb {p},\pmb {\varXi },\varOmega }^0\), \(\tilde{\pmb {\varPi }}_{\pmb {p},\pmb {\varXi },\varOmega }^{1}\), \(\tilde{\pmb {\varPi }}_{\pmb {p},\pmb {\varXi },\varOmega }^{2}\), and \(\tilde{\varPi }_{\pmb {p},\pmb {\varXi },\varOmega }^3\) w.r.t. the reference domain for \(\pmb {\varXi } = [\varXi _1,\varXi _2,\varXi _3]\) defined in complete analogy to (7), commute with the differential operators \(\pmb {{{\,\mathrm{grad}\,}}},\pmb {{{\,\mathrm{{curl}}\,}}}\) and \({\text {div}}\). By properties of the pullbacks, cf. [3, Sec. 5.1], this holds for the physical domain as well. The three-dimensional global B-spline projections are then defined as

$$\begin{aligned} \tilde{\varPi }^0_\varOmega&:=\bigoplus _{0\le j< N} \left( (\iota _{0}(\pmb {F}_j))^{-1}\circ \tilde{\varPi }_{\pmb {p},\pmb {\varXi },\varOmega }^0\circ \iota _{0}(\pmb {F}_j)\right) ,\nonumber \\ \tilde{\pmb {\varPi }}^1_\varOmega&:=\bigoplus _{0\le j< N} \left( (\iota _{1}(\pmb {F}_j))^{-1}\circ \tilde{\pmb {\varPi }}_{\pmb {p},\pmb {\varXi },\varOmega }^1\circ \iota _{1}(\pmb {F}_j)\right) ,\\ \tilde{\pmb {\varPi }}^2_\varOmega&:=\bigoplus _{0\le j< N} \left( (\iota _{2}(\pmb {F}_j))^{-1}\circ \tilde{\pmb {\varPi }}_{\pmb {p},\pmb {\varXi },\varOmega }^2\circ \iota _{2}(\pmb {F}_j)\right) ,\nonumber \\ \tilde{\varPi }^3_\varOmega&:=\bigoplus _{0\le j< N} \left( (\iota _{3}(\pmb {F}_j)^{-1}\circ \tilde{\varPi }_{\pmb {p},\pmb {\varXi },\varOmega }^3\circ \iota _{3}(\pmb {F}_j)\right) . \end{aligned}$$

In complete analogy to the Proof of Theorem 2, one can achieve the following result for the three-dimensional multipatch spline complex.

Corollary 5

Let the volumetric analogue of Assumptions 5 and 7 be satisfied. Assume the functions \(f_1,\)\(\pmb {f}_2,\)\(\pmb {f}_3,\)\(f_4\) to be sufficiently smooth, i.e., such that the norms and interpolation operators below are well defined. Then one finds, for integers s as below,

$$\begin{aligned} {\left\| f_1 - \tilde{\varPi }^0_\varOmega f_1 \right\| }_{H^r(\varOmega )}&\lesssim h^{s-r} {\left\| f_1 \right\| }_{{H}^s_{\mathrm {pw}}(\varOmega )},\quad \quad 3\le s\le p+1,\\ {\left\| \pmb {f}_2 - \tilde{\pmb {\varPi }}^1_\varOmega \pmb {f}_2 \right\| }_{\pmb {H}({{\,\mathrm{{curl}}\,}},\varOmega )}&\lesssim h^s {\left\| \pmb {f}_2 \right\| }_{{\pmb {H}}^s_{\mathrm {pw}}({{\,\mathrm{{curl}}\,}},\varOmega )},\quad 2< s\le p,\\ {\left\| \pmb {f}_3 - \tilde{\pmb {\varPi }}^2_\varOmega \pmb {f}_3 \right\| }_{\pmb {H}({\text {div}},\varOmega )}&\lesssim h^s {\left\| \pmb {f}_3 \right\| }_{{\pmb {H}}^s_{\mathrm {pw}}({\text {div}},\varOmega )},\quad 1 < s\le p,\\ {\left\| f_4 - \tilde{\varPi }^3_\varOmega f_4 \right\| }_{L^2(\varOmega )}&\lesssim h^s {\left\| f_4 \right\| }_{{H}^s_{\mathrm {pw}}(\varOmega )},\quad \quad \quad 0 \le s\le p, \end{aligned}$$

for \(r = 0,1\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buffa, A., Dölz, J., Kurz, S. et al. Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis. Numer. Math. 144, 201–236 (2020). https://doi.org/10.1007/s00211-019-01079-x

Download citation

Mathematics Subject Classification

  • 65D07
  • 65N12
  • 65N38