Advertisement

Numerische Mathematik

, Volume 143, Issue 4, pp 781–795 | Cite as

Generalized Gaffney inequality and discrete compactness for discrete differential forms

  • Juncai He
  • Kaibo HuEmail author
  • Jinchao Xu
Article
  • 119 Downloads

Abstract

We prove generalized Gaffney inequalities and the discrete compactness for finite element differential forms on s-regular domains, including general Lipschitz domains. In computational electromagnetism, special cases of these results have been established for edge elements with weakly imposed divergence-free conditions and used in the analysis of nonlinear and eigenvalue problems. In this paper, we generalize these results to discrete differential forms, not necessarily with strongly or weakly imposed constraints. The analysis relies on a new Hodge mapping and its approximation property. As an application, we show \(L^{p}\) estimates for several finite element approximations of the scalar and vector Laplacian problems.

Mathematics Subject Classification

65N30 65N12 58J10 35D30 

Notes

Acknowledgements

The authors are grateful to Prof. Ralf Hiptmair for several helpful suggestions.

References

  1. 1.
    Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arnold, D.N., Logg, A.: Periodic table of the finite elements. SIAM News 47(9) (2014)Google Scholar
  5. 5.
    Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36(4), 1264–1290 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bossavit, A.: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. Academic Press, Cambridge (1998)zbMATHGoogle Scholar
  8. 8.
    Chen, L., Wu, Y., Zhong, L., Zhou, J.: MultiGrid Preconditioners for Mixed Finite Element Methods of the Vector Laplacian. J. Sci. Comput. 77(1), 101–128 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Christiansen, S.H.: A div-curl lemma for edge elements. SIAM J. Numer. Anal. 43(1), 116–126 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer. 20, 1–119 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Christiansen, S.H., Scheid, C.: Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation. ESAIM Math. Model. Numer. Anal. 45(4), 739–760 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Christiansen, S.H., Winther, R.: On variational eigenvalue approximation of semidefinite operators. IMA J. Numer. Anal. 33(1), 164–189 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ern, A., Guermond, J.L.: Mollification in strongly Lipschitz domains with application to continuous and discrete De Rham complexes. Comput. Methods Appl. Math. 16(1), 51–75 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Falk, R., Winther, R.: Local bounded cochain projections. Math. Comput. 83(290), 2631–2656 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magneto-hydrodynamic equations. M3AS 28(4), 659–695 (2018) zbMATHGoogle Scholar
  17. 17.
    Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot {B}=0\) exactly for MHD models. Numer. Math. 135(2), 371–396 (2017)Google Scholar
  18. 18.
    Hu, K., Qiu, W., Shi, K.: Convergence of a B-E based finite element method for MHD models on Lipschitz domains. J. Comput. Appl. Math. 1–22, (2019) (Accepted) Google Scholar
  19. 19.
    Hu, K., Xu, J.: Structure-preserving finite element methods for stationary MHD models. Math. Comput. 88, 553–581 (2019).  https://doi.org/10.1090/mcom/3341
  20. 20.
    Jakab, T., Mitrea, I., Mitrea, M.: On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math. J. 58(5), 2043–2072 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lang, S.: Fundamentals of Differential Geometry, vol. 191. Springer, Berlin (2012)zbMATHGoogle Scholar
  22. 22.
    Mitrea, D., Mitrea, M., Taylor, M.: Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds, vol. 713. American Mathematical Society, Providence (2001)zbMATHGoogle Scholar
  23. 23.
    Monk, P., Demkowicz, L.: Discrete compactness and the approximation of Maxwell’s equations in \(\mathbb{R}^{3}\). Math. Comput. 70(234), 507–523 (2001)Google Scholar
  24. 24.
    Schöberl, J.: Commuting quasi-interpolation operators for mixed finite elements. Preprint ISC-01-10-MATH, Texas A&M University, College Station, TX (2001)Google Scholar
  25. 25.
    Schötzau, D.: Mixed finite element methods for stationary incompressible magnetohydrodynamics. Numer. Math. 96(4), 771–800 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations