Advertisement

Numerische Mathematik

, Volume 143, Issue 3, pp 713–747 | Cite as

Regularization of inverse problems by two-point gradient methods in Banach spaces

  • Min Zhong
  • Wei WangEmail author
  • Qinian Jin
Article

Abstract

In this paper, we propose and analyze a two-point gradient method for solving inverse problems in Banach spaces which is based on the Landweber iteration and an extrapolation strategy. The method allows to use non-smooth penalty terms, including the \(L^1\)-like and the total variation-like penalty functionals, which are significant in reconstructing special features of solutions such as sparsity and piecewise constancy in practical applications. The design of the method involves the choices of the step sizes and the combination parameters which are carefully discussed. Numerical simulations are presented to illustrate the effectiveness of the proposed method.

Mathematics Subject Classification

65J15 65J20 47H17 

Notes

Acknowledgements

The work of M. Zhong is supported by the National Natural Science Foundation of China (Nos. 11871149, 11671082) and and supported by Zhishan Youth Scholar Program of SEU. The work of W. Wang is partially supported by the National Natural Science Foundation of China (No. 11871180) and Natural Science Foundation of Zhejiang Province (No. LY19A010009). The work of Q Jin is partially supported by the Future Fellowship of the Australian Research Council (FT170100231).

References

  1. 1.
    Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov accelerated forward–backward method is actually faster than \(O(1/k^2)\). SIAM J. Optim. 26, 1824–1834 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bot, R., Hein, T.: Iterative regularization with a geeral penalty term|theory and applications to \(L^1\) and TV regularization. Inverse Probl. 28, 104010 (2012)CrossRefGoogle Scholar
  5. 5.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends\(^{\textregistered }\) Mach. Learn. 3, 1–122 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  7. 7.
    Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations, Second Edition, Applied Mathematical Sciences, vol. 95. Springer, Berlin (2016)CrossRefGoogle Scholar
  8. 8.
    Hanke, M.: Accelerated Landweber iterations for the solution of ill-posed equations. Numer. Math. 60, 341–373 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hanke, M.: A regularizing Levenberg–Marquardt scheme with applications to inverse groundwater filtration problems. Inverse Probl. 13, 79–95 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hansen, P.C., Saxild-Hansen, M.: AIR tools—a MATLAB package of algebraic iterative reconstruction methods. J. Comput. Appl. Math. 236, 2167–2178 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hegland, M., Jin, Q., Wang, W.: Accelerated Landweber iteration with convex penalty for linear inverse problems in Banach spaces. Appl. Anal. 94, 524–547 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hein, T., Kazimierski, K.S.: Accelerated Landweber iteration in Banach spaces. Inverse Probl. 26, 1037–1050 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hubmer, S., Ramlau, R.: Convergence analysis of a two-point gradient method for nonlinear ill-posed problems. Inverse Probl. 33, 095004 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hubmer, S., Ramlau, R.: Nesterov’s accelerated gradient method for nonlinear ill-posed problems with a locally convex residual functional. Inverse Probl. 34, 095003 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jin, Q.: Inexact Newton–Landweber iteration for solving nonlinear inverse problems in Banach spaces. Inverse Probl. 28, 065002 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jin, Q.: Landweber–Kaczmarz method in Banach spaces with inexact inner solvers. Inverse Probl. 32, 104005 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jin, Q., Wang, W.: Landweber iteration of Kaczmarz type with general non-smooth convex penalty functionals. Inverse Probl. 29, 085011 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jin, Q., Yang, H.: Levenberg–Marquardt method in Banach spaces with general convex regularization terms. Numer. Math. 133, 655–684 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jin, Q., Zhong, M.: On the iteratively regularized Gauss–Newton method in Banach spaces with applications to parameter identification problems. Numer. Math. 124, 647–683 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jin, Q., Zhong, M.: Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms. Numer. Math. 127, 485–513 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kaltenbacher, B.: A convergence rates result for an iteratively regularized Gauss–Newton Halley method in Banach space. Inverse Probl. 31, 015007 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Probl. 25, 065003 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kress, R.: Linear Integral Equations. Springer, Berlin (1989)CrossRefGoogle Scholar
  25. 25.
    Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)CrossRefGoogle Scholar
  26. 26.
    Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^2)\). Sov. Math. Dokl. 27, 372–376 (1983)zbMATHGoogle Scholar
  27. 27.
    Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22, 311–329 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Schöpfer, F., Schuster, T.: Fast regularizing sequential subspace optimization in Banach spaces. Inverse Probl. 25, 015013 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, J., Wang, W., Han, B.: An iteration regularizaion method with general convex penalty for nonlinear inverse problems in Banach spaces. J. Comput. Appl. Math. 361, 472–486 (2019)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang, Y.C., Liu, J.J.: Identification of non-smooth boundary heat dissipation by partial boundary data. Appl. Math. Lett. 69, 42–48 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zălinscu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)CrossRefGoogle Scholar
  32. 32.
    Zhong, M., Wang, W.: A regularizing multilevel approach for nonlinear inverse problems. Appl. Numer. Math. 32, 297–331 (2019)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhu, M., Chan, T.F.: An efficient primaldual hybrid gradient algorithm for total variation image restoration. CAM Report 08-34, UCLA (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.College of Mathematics, Physics and Information EngineeringJiaxing UniversityJiaxingPeople’s Republic of China
  3. 3.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia

Personalised recommendations