Advertisement

Numerische Mathematik

, Volume 143, Issue 3, pp 555–582 | Cite as

A structure preserving flow for computing Hamiltonian matrix exponential

  • Yueh-Cheng KuoEmail author
  • Wen-Wei Lin
  • Shih-Feng Shieh
Article
  • 138 Downloads

Abstract

This article focuses on computing Hamiltonian matrix exponential. Given a Hamiltonian matrix \(\mathcal {H}\), it is well-known that the matrix exponential \(e^{\mathcal {H}}\) is a symplectic matrix and its eigenvalues form reciprocal \((\lambda ,1/\bar{\lambda })\). It is important to take care of the symplectic structure for computing \(e^{\mathcal {H}}\). Based on the structure-preserving flow proposed by Kuo et al. (SIAM J Matrix Anal Appl 37:976–1001, 2016), we develop a numerical method for computing the symplectic matrix pair \((\mathcal {M},\mathcal {L})\) which represents \(e^{\mathcal {H}}\).

Mathematics Subject Classification

15A22 15A24 65F30 34A12 

Notes

Acknowledgements

We thank the Editor, Professor Volker Mehrmann, and the anonymous referees for their careful reading, valuable comments and suggestions on the manuscript.

References

  1. 1.
    Chiang, C.Y., Chu, E.K.-W., Guo, C.H., Huang, T.M., Lin, W.W., Xu, S.F.: Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case. SIAM J. Matrix Anal. Appl. 31, 227–247 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Engwerda, J.C., Ran, A.C.M., Rijkeboer, A.L.: Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation \(X + A^* X^{-1}A = Q\). Linear Algebra Appl. 186, 255–275 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hairer, E., Lubich, C., Wanner, G.H.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  4. 4.
    Hairer, E., Nørestt, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer, New York (1992)Google Scholar
  5. 5.
    Higham, N.J.: Functions of matrices: Theory and Computation. SIAM, Philadelphia (2008)CrossRefGoogle Scholar
  6. 6.
    Huang, T.M., Lin, W.W.: Structured doubling algorithms for weakly stabilizing Hermitian solutions of algebraic Riccati equations. Linear Algebra Appl. 430, 1452–1478 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kahan, W., Li, R.-C.: Composition constants for raising the orders of unconventional schemes for ordinary differential equations. Math. Comput. 66, 1089–1099 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kuo, Y.C., Lin, W.W., Shieh, S.F.: Structure-preserving flows of symplectic matrix pairs. SIAM. J. Matrix Anal. Appl. 37, 976–1001 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kuo, Y.C., Lin, W.W., Shieh, S.F.: The asymptotic analysis of the structure-preserving doubling algorithms. Linear Algebra Appl. 531, 318–355 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kuo, Y.C., Shieh, S.F.: A structure-preserving curve for symplectic pairs and its applications. SIAM. J. Matrix Anal. Appl. 33, 597–616 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  12. 12.
    Leimkuhler, B.J., Van Vleck, E.S.: Orthosymplectic integration of linear hamiltonian systems. Numer. Math. 77(2), 269–282 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, R.-C., Kahan, W.: A family of anadromic numerical methods for matrix Riccati differential equations. Math. Comput. 81, 233–265 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lin, W.W., Mehrmann, V., Xu, H.: Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra Appl. 302–303, 469–533 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lin, W.W., Xu, S.F.: Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J. Matrix Anal. Appl. 28, 26–39 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mehrmann, V.: The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution. Lecture Notes in Control and Inform Sciences, vol. 163. Springer, Berlin (1991)CrossRefGoogle Scholar
  17. 17.
    Mehrmann, V., Poloni, F.: Doubling algorithms with permuted Lagrangian graph bases. SIAM. J. Matrix Anal. Appl. 33, 780–805 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Schiff, J., Shnider, S.: A natural approach to the numerical integration of riccati differential equations. SIAM J. Numer. Anal. 36(5), 1392–1413 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shieh, S.F., Kuo, Y.C., You, Y.S.: The classification of symplectic matrices and pairs. Ann. Math. Sci. Appl. 4(1), 35–52 (2019)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsNational University of KaohsiungKaohsiungTaiwan
  2. 2.Department of Applied MathematicsNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.Department of MathematicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations