Advertisement

Numerische Mathematik

, Volume 143, Issue 2, pp 339–378 | Cite as

Time-discretization of stochastic 2-D Navier–Stokes equations with a penalty-projection method

  • Erika Hausenblas
  • Tsiry A. RandrianasoloEmail author
Article

Abstract

A time-discretization of the stochastic incompressible Navier–Stokes problem by penalty method is analyzed. Some error estimates are derived, combined, and eventually arrive at a speed of convergence in probability of order 1/4 of the main algorithm for the pair of variables velocity and pressure. Also, using the law of total probability, we obtain the strong convergence of the scheme for both variables.

Mathematics Subject Classification

76D05 60H15 65J15 65M15 65M12 

Notes

References

  1. 1.
    Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20(3), 179–192 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.: A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equation. IMA J. Numer. Anal. 34(2), 502 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bernard, P., Wallace, J.: Turbulent Flow: Analysis, Measurement, and Prediction. Wiley, New York (2002)Google Scholar
  4. 4.
    Bessaih, H., Brzeźniak, Z., Millet, A.: Splitting up method for the 2D stochastic Navier–Stokes equations. Stoch. Partial Differ. Equ. Anal. Comput. 2(4), 433–470 (2014)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Pinsky, M., Birnir, B.: Turbulence of a unidirectional flow. In: Probability, Geometry and Integrable Systems for Henry McKean’s Seventy-Fifth Birthday, pp. 29–52. Cambridge University Press, Cambridge (2008)Google Scholar
  6. 6.
    Birnir, B.: The Kolmogorov–Obukhov statistical theory of turbulence. J. Nonlinear Sci. 23(4), 657–688 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, vol. 183. Springer, Berlin (2012)zbMATHGoogle Scholar
  8. 8.
    Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. ESAIM Math. Model. Numer. Anal. Model. Math. Anal. Numer. 8(R2), 129–151 (1974)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Brzeźniak, Z., Carelli, E., Prohl, A.: Finite-element-based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing. IMA J. Numer. Anal. 33(3), 771–824 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brzeźniak, Z., Ferrario, B.: A note on stochastic Navier-Stokes equations with a generalized noise. Stoch. Partial Differ. Equ. Anal. Comput. 5(1), 53–80 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Capiński, M., Peszat, S.: On the existence of a solution to stochastic Navier–Stokes equations. Nonlinear Anal. Theory Methods Appl. 44(2), 141–177 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carelli, E., Hausenblas, E., Prohl, A.: Time-splitting methods to solve the stochastic incompressible Stokes equation. SIAM J. Numer. Anal. 50(6), 2917–2939 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Carelli, E., Prohl, A.: Rates of convergence for discretizations of the stochastic incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 50(5), 2467–2496 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Semin. Mat. Univ. Padova 31, 308–340 (1961)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49(1), 1–23 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    de Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96(4), 733–770 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Debussche, A., Printems, J.: Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. Ser. B 6(4), 761–781 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fernando, B.P.W., Rüdiger, B., Sritharan, S.S.: Mild solutions of stochastic Navier–Stokes equation with jump noise in \(L^p\)-spaces. Math. Nachr. 288(14–15), 1615–1621 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Flandoli, F.: Dissipativity and invariant measures for stochastic Navier–Stokes equations. NoDea Nonlinear Differ. Equ. Appl. 1(4), 403–423 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Field 102(3), 367–391 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Flandoli, F., Schmalfuß, B.: Weak solutions and attractors for three-dimensional Navier–Stokes equations with nonregular force. J. Dyn. Differ. Equ. 11(2), 355–398 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Flandoli, F., Tortorelli, V.M.: Time discretization of Ornstein–Uhlenbeck equations and stochastic Navier–Stokes equations with a generalized noise. Stochastics 55(1–2), 141–165 (1995)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Giga, Y., Miyakawa, T.: Solutions in \({L}^r\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Guermond, J.-L., Minev, P.D., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hou, T.Y., Luo, W., Rozovskii, B., Zhou, H.-M.: Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J. Comput. Phys. 216(2), 687–706 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York (2014)zbMATHGoogle Scholar
  27. 27.
    Langa, J.A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochastic Navier–Stokes equations. Appl. Math. Optim. 48(3), 195–210 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires, volume 31. Dunod Paris (1969)Google Scholar
  29. 29.
    Manna, U., Menaldi, J.-L., Sritharan, S.S.: Stochastic 2-D Navier–Stokes equation with artificial compressibility. Commun. Stoch. Anal. 1(1), 123–139 (2007)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Milstein, G.N., Tretyakov, M.: Layer methods for stochastic Navier–Stokes equations using simplest characteristics. J. Comput. Appl. Math. 302, 1–23 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2011)Google Scholar
  32. 32.
    Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  33. 33.
    Printems, J.: On the discretization in time of parabolic stochastic partial differential equations. ESAIM Math. Model. Numer. Anal. Model. Math. Anal. Numer. 35(6), 1055–1078 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Prohl, A.: Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier–Stokes Equations. Advances in Numerical Mathematics. Vieweg+Teubner Verlag, Berlin (2013)zbMATHGoogle Scholar
  35. 35.
    Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62(1), 49–73 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Shen, J.: On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM J. Numer. Anal. 32(2), 386–403 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Témam, R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bull. Soc. Math. France 96, 115–152 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Témam, R.: Navier–Stokes equations and nonlinear functional analysis. In: CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (1983)Google Scholar
  40. 40.
    Témam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications, North-Holland (1984)zbMATHGoogle Scholar
  41. 41.
    Yin, H.: Stochastic Navier–Stokes equations with artificial compressibility in random durations. Int. J. Stoch. Anal. (2010) 2010:Article ID 730492Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl Angewandte MathematikMontanuniversität LeobenLeobenAustria
  2. 2.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations