Advertisement

Numerische Mathematik

, Volume 141, Issue 4, pp 1009–1042 | Cite as

Analysis of fully discrete FEM for miscible displacement in porous media with Bear–Scheidegger diffusion tensor

  • Wentao Cai
  • Buyang Li
  • Yanping Lin
  • Weiwei SunEmail author
Article
  • 57 Downloads

Abstract

Fully discrete Galerkin finite element methods are studied for the equations of miscible displacement in porous media with the commonly-used Bear–Scheidegger diffusion–dispersion tensor:
$$\begin{aligned} D(\mathbf{u}) = \gamma d_m I + |\mathbf{u}|\bigg ( \alpha _T I + (\alpha _L - \alpha _T) \frac{\mathbf{u} \otimes \mathbf{u}}{|\mathbf{u}|^2}\bigg ) \, . \end{aligned}$$
Previous works on optimal-order \(L^\infty (0,T;L^2)\)-norm error estimate required the regularity assumption \(\nabla _x\partial _tD(\mathbf{u}(x,t)) \in L^\infty (0,T;L^\infty (\Omega ))\), while the Bear–Scheidegger diffusion–dispersion tensor is only Lipschitz continuous even for a smooth velocity field \(\mathbf{u}\). In terms of the maximal \(L^p\)-regularity of fully discrete finite element solutions of parabolic equations, optimal error estimate in \(L^p(0,T;L^q)\)-norm and almost optimal error estimate in \(L^\infty (0,T;L^q)\)-norm are established under the assumption of \(D(\mathbf{u})\) being Lipschitz continuous with respect to \(\mathbf{u}\).

Notes

References

  1. 1.
    Adams, R.A., Fournier, J.F.: Sobolev Spaces. Elsevier, Amsterdam (2003)zbMATHGoogle Scholar
  2. 2.
    Akrivis, G., Li, B.: Maximum norm analysis of implicit-explicit backward difference formulas for nonlinear parabolic equations. IMA J. Numer. Anal. 38, 75–101 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comput. 86, 1527–1552 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematic. Teubner, Stuttgart (1999)zbMATHGoogle Scholar
  5. 5.
    Ashyralyev, A., Piskarev, S., Weis, L.: On well-posedness of difference schemes for abstract parabolic equations in \(L_p([0, T];E)\) spaces. Numer. Funct. Anal. Optim. 23, 669–693 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Auscher, P., Qafsaoui, M.: Observations on \(W^{1, p}\) estimates for divergence elliptic equations with VMO coefficients. Bollettino dellUnione Matematica Italiana, Serie 8 5–B, 487509 (2002)zbMATHGoogle Scholar
  7. 7.
    Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Springer, New York (1990)CrossRefzbMATHGoogle Scholar
  8. 8.
    Crouzeix, M.: Contractivity and analyticity in \(\ell ^p\) of some approximation of the heat equation. Numer. Algorithms 33, 193–201 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \(W^{1, p}\) norm for finite element methods on graded meshes. Math. Comput. 81, 743–764 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numer. 17, 17–33 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988)CrossRefGoogle Scholar
  12. 12.
    Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Feng, X.: On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194, 883–910 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    FreeFEM++, version 3.51. http://www.freefem.org/ (2017)
  16. 16.
    Geissert, M.: Discrete maximal \(L^p\) regularity for finite element operators. SIAM J. Numer. Anal. 44, 677–698 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Geissert, M.: Applications of discrete maximal \(L^p\) regularity for finite element operators. Numer. Math. 108, 121–149 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hansbo, A.: Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. BIT Numer. Math. 42, 351–379 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kashiwabara, T., Kemmochi, T.: Maximum norm error estimates for the finite element approximation of parabolic problems on smooth domains. Preprint, arXiv:1805.01336
  22. 22.
    Kemmochi, T., Saito, N.: Discrete maximal regularity and the finite element method for parabolic equations. Numer. Math. 38, 905–937 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kovács, B., Li, B., Lubich, C.: \(A\)-stability implies discrete maximal parabolic regularity. SIAM J. Numer. Anal. 54, 3600–3624 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kunstmann, P.C., Li, B., Lubich, C.: Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity. Comput. Math. Found. (2017).  https://doi.org/10.1007/s10208-017-9364-x
  25. 25.
    Leykekhman, D.: Pointwise localized error estimates for parabolic finite element equations. Numer. Math. 96, 583–600 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Leykekhman, D., Vexler, B.: Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135, 923–952 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Li, B.: Maximum-norm stability and maximal \(L^p\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. Numer. Math. 131, 489–516 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Li, B., Sun, W.: Regularity of the diffusion–dispersion tensor and error analysis of FEMs for a porous media flow. SIAM J. Numer. Anal. 53, 1418–1437 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Li, B., Sun, W.: Maximal regularity of fully discrete finite element solution of parabolic equations. SIAM J. Numer. Anal. 55, 521–542 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Li, B., Sun, W.: Maximal \(L^p\) analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Math. Comput. 86, 1071–1102 (2017)CrossRefzbMATHGoogle Scholar
  32. 32.
    Li, B., Sun, W.: Maximal \( L^p\) error analysis of FEMs for nonlinear parabolic equations with nonsmooth coefficients. Int. J. Numer. Anal. Model. 14, 670–687 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Li, B., Wang, J., Sun, W.: The stability and convergence of fully discrete Galerkin FEMs for incompressible miscible flows in porous media. Commun. Comput. Phys. 15, 1141–1158 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lieberman, G.M.: Second Order Parabolic Differential Equations, World Scientific Publishing Co. Pte. Ltd, Copyright 1996, Singapore. Reprinted in (2005)Google Scholar
  35. 35.
    Lieberman, G.M.: Oblique Derivative Problems for Elliptic Equations. World Scientific Publishing Co Pte. Ltd, Singapore (2013)CrossRefzbMATHGoogle Scholar
  36. 36.
    Lin, Y.: On maximum norm estimates for Ritz-Volterra projection with applications to some time dependent problems. J. Comput. Math. 15, 159–178 (1997)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Lin, Y., Thomée, V., Wahlbin, L.B.: Ritz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28, 1047–1070 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, Basel (1995)CrossRefzbMATHGoogle Scholar
  39. 39.
    Nitsche, J.A., Wheeler, M.F.: \(L_\infty \)-boundedness of the finite element Galerkin operator for parabolic problems. Numer. Funct. Anal. Optim. 4, 325–353 (1981/1982)Google Scholar
  40. 40.
    Palencia, C.: Maximum norm analysis of completely discrete finite element methods for parabolic problems. SIAM J. Numer. Anal. 33, 1654–1668 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Schatz, A.H., Thomée, V., Wahlbin, L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33, 265–304 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Schatz, A.H., Thomée, V., Wahlbin, L.B.: Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations. Comm. Pure Appl. Math. 51, 1349–1385 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Scheidegger, A.E.: The Physics of Flow Through Porous Media. The MacMillan Company, New York (1957)zbMATHGoogle Scholar
  44. 44.
    Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52, 273–298 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Wang, J., Si, Z., Sun, W.: A new error analysis on characteristic methods for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 52, 3300–3020 (2014)Google Scholar
  48. 48.
    Wheeler, M.F.: A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Yang, J., Du, Q., Zhang, W.: Uniform \(L^p\)-bound of the Allen–Cahn equation and its numerical discretization. Int. J. Numer. Anal. Model. 15, 213–227 (2018)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wentao Cai
    • 1
  • Buyang Li
    • 2
  • Yanping Lin
    • 2
  • Weiwei Sun
    • 3
    • 4
    Email author
  1. 1.Department of Mathematics, School of SciencesHangzhou Dianzi UniversityHangzhouPeople’s Republic of China
  2. 2.Department of Applied MathematicsThe Hong Kong Polytechnic UniversityHong KongPeople’s Republic of China
  3. 3.Department of MathematicsCity University of Hong KongHong KongPeople’s Republic of China
  4. 4.School of Mathematical ScienceSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations