Advertisement

Non-satisfiability of a positivity condition for commutator-free exponential integrators of order higher than four

  • Harald Hofstätter
  • Othmar Koch
Article
  • 23 Downloads

Abstract

We consider commutator-free exponential integrators as put forward in Alverman and Fehske (J Comput Phys 230:5930–5956, 2011). For parabolic problems, it is important for the well-definedness that such an integrator satisfies a positivity condition such that essentially it only proceeds forward in time. We prove that this requirement implies maximal convergence order of four for real coefficients, which has been conjectured earlier by other authors.

Mathematics Subject Classification

65L05 

Notes

Supplementary material

References

  1. 1.
    Alverman, A., Fehske, H.: High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. Phys. 230, 5930–5956 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alverman, A., Fehske, H., Littlewood, P.: Numerical time propagation of quantum systems in radiation fields. New J. Phys. 14, 105008 (2012)CrossRefGoogle Scholar
  3. 3.
    Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Effective approximation for the linear time-dependent Schrödinger equation. Found. Comput. Math. 14, 689–720 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential. Proc. R. Soc. A 472, 20150733 (2016)CrossRefGoogle Scholar
  5. 5.
    Blanes, S., Casas, F., Chartier, P., Murua, A.: Optimized high-order splitting methods for some classes of parabolic equations. Math. Comp. 82, 1559–1576 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blanes, S., Casas, F., Oteo, J., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blanes, S., Casas, F., Thalhammer, M.: High-order commutator-free quasi-Magnus integrators for non-autonomous linear evolution equations. Comput. Phys. Commun. 220, 243–262 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Blanes, S., Casas, F., Thalhammer, M.: Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type. IMA J. Numer. Anal. 38, 743–778 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Blanes, S., Moan, P.: Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems. Appl. Numer. Math. 56, 1519–1537 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT Numer. Math. 49, 487–508 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Celledoni, E.: Eulerian and semi-Lagrangian schemes based on commutator-free exponential integrators. Group Theory Numer. Anal. CRM Proc. Lecture Notes 39, 77–90 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Celledoni, E., Marthinsen, A., Owren, B.: Commutator-free Lie-group methods. Future Gen. Comput. Syst. 19(3), 341–352 (2003)CrossRefGoogle Scholar
  13. 13.
    Goldman, D., Kaper, T.: \(n\)th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33(1), 349–367 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT Numer. Math. 49, 527–542 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  16. 16.
    Iserles, A., Nørsett, S.: On the solution of linear differential equations on Lie groups. Phil. Trans. R. Soc. Lond. A 357, 983–1019 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–000 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Owren, B.: Order conditions for commutator-free Lie group methods. J. Phys. A: Math. Gen. 39, 5585–5599 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Park, T., Light, J.: Unitary quantum time evolution by iterative Lanczos reduction. J. Chem. Phys. 85, 5870–5876 (1986)CrossRefGoogle Scholar
  21. 21.
    Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sheng, Q.: Solving linear partial differential equations by exponential splittings. IMA J. Numer. Anal. 9(2), 199–212 (1989)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für MathematikUniversität WienWienAustria

Personalised recommendations