DDFV method for Navier–Stokes problem with outflow boundary conditions

  • Thierry GoudonEmail author
  • Stella Krell
  • Giulia Lissoni


We propose a Discrete Duality Finite Volume scheme (DDFV for short) for the unsteady incompressible Navier–Stokes problem with outflow boundary conditions. As in the continuous case, those conditions are derived from a weak formulation of the equations and they provide an energy estimate of the solution. We prove well-posedness of the scheme and a discrete energy estimate. Finally we perform some numerical tests simulating the flow behind a cylinder inside a long channel to show the robustness of such conditions in the DDFV framework.

Mathematics Subject Classification

76M12 65M08 35Q30 76D05 65M12 



We express our gratitude to Franck Boyer for his useful help during the preparation of this work.


  1. 1.
    Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray–Lions type elliptic problems on general 2D-meshes. Numer. Methods PDEs 23(1), 145–195 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume scheme. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boyer, F., Fabrie, P.: Outflow boundary conditions for the incompressible non-homogeneous Navier Stokes equations. Discrete Continuous Dyn. Syst. Ser. B 7(2), 219–250 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier Stokes Equations and Related Models. Applied Mathematical Sciences. Springer, New York (2012)zbMATHGoogle Scholar
  5. 5.
    Boyer, F., Krell, S., Nabet, F.: Inf-sup stability of the discrete duality finite volume method for the 2D Stokes problem. Math. Comput. 84, 2705–2742 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, New York (2007)Google Scholar
  7. 7.
    Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient Solutions of Elliptic Systems, vol. 10, pp. 11–19. Vieweg, Kiel (1984)CrossRefGoogle Scholar
  8. 8.
    Bruneau, C.H.: Boundary conditions on artificial frontiers for incompressible and compressible Navier–Stokes equations. M2AN Math. Model. Numer. Anal. 34, 303–314 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bruneau, C.H., Fabrie, P.: Effective downstream boundary conditions for incompressible Navier Stokes equations. Int. J. Numer. Meth. Fluids 19(8), 693–705 (1994)CrossRefGoogle Scholar
  10. 10.
    Bruneau, C.H., Fabrie, P.: New efficient boundary conditions for incompressible Navier–Stokes equations: a wellposedness result. M2AN Math. Model. Numer. Anal. 30(7), 815–840 (1996)CrossRefGoogle Scholar
  11. 11.
    Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods PDEs 31(3), 723–760 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Domelevo, K., Omnes, P.: A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. M2AN Math. Model. Numer. Anal. 39(6), 1203–1249 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 715–1022. North-Holland (2000)Google Scholar
  14. 14.
    Goudon, T., Krell, S., Lissoni, G.: Numerical analysis of the DDFV method for the Stokes problem with mixed Neumann/Dirichlet boundary conditions. In: Cancés, C., Omnès, P. (eds.) Proceeding of the 8th International Symposium on Finite Volumes for Complex Applications, Lille, France, Springer Proceedings in Math. & Statistics, vol. 199, pp. 361–369 (2017)Google Scholar
  15. 15.
    Halpern, L.: Artificial boundary conditions for incompletely parabolic perturbations of hyperbolic systems. SIAM J. Math. Anal. 22(5), 1256–1283 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Halpern, L., Schatzman, M.: Artificial boundary conditions for incompressible flows. SIAM J. Math. Anal. 20, 308–353 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hermeline, F.: A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160(2), 481–499 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hermeline, F.: Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192(16–18), 1939–1959 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int. J. Numer. Methods Fluids 44(7), 777–788 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Krell, S.: Schémas volumes finis en mécanique des fluides complexes. Ph.D. thesis, Univ. de Provence (2010)Google Scholar
  21. 21.
    Krell, S.: Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes. Numer. Methods PDEs 27(6), 1666–1706 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Krell, S.: Stabilized DDFV schemes for the incompressible Navier–Stokes equations. In: Fort, J., Fürst, J., Halama, J., Herbin, R., Hubert, F. (eds.) Finite Volumes for Complex Applications VI, Problems & Perspectives, vol. 4, pp. 605–612. Springer, Heidelberg (2011). Springer Proceedings in MathematicsCrossRefGoogle Scholar
  23. 23.
    Schäfer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers, Notes on Num. Fluid Mech. (NNFM), vol. 48, pp. 547–566. Vieweg (1996)Google Scholar
  24. 24.
    Schatzman, M.: Analyse numérique, 2nd edn. Dunod (2001)Google Scholar
  25. 25.
    Tourrette, L.: Artificial boundary conditions for the linearized compressible Navier–Stokes equations. J. Comput. Phys. 137(1), 1–37 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université Côte d’Azur, Inria, CNRS, LJAD, Parc ValroseNiceFrance

Personalised recommendations