Advertisement

Complete radiation boundary conditions for the Helmholtz equation I: waveguides

  • Thomas Hagstrom
  • Seungil KimEmail author
Article
  • 50 Downloads

Abstract

We consider the use of complete radiation boundary conditions for the solution of the Helmholtz equation in waveguides. A general analysis of well-posedness, convergence, and finite element approximation is given. In addition, methods for the optimization of the boundary condition parameters are considered. The theoretical results are illustrated by some simple numerical experiments.

Keywords

Helmholtz equation Complete radiation boundary condition Waveguide 

Mathematics Subject Classification

65N12 65N30 

Notes

References

  1. 1.
    Bangerth, W., Hartmann, R., Kanschat, G.: deal. II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 24 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bécache, E., Dhia, A.-S.B.-B., Legendre, G.: Perfectly matched layers for the convected Helmholtz equation. SIAM J. Numer. Anal. 42(1), 409–433 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bendali, A., Guillaume, P.: Non-reflecting boundary conditions for waveguides. Math. Comput. 68(225), 123–144 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bramble, J.H., Pasciak, J.E.: Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math. Comput. 76(258), 597–614 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, Z., Zheng, W.: Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media. SIAM J. Numer. Anal. 48(6), 2158–2185 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Wiley, New York (1953)zbMATHGoogle Scholar
  7. 7.
    Druskin, V., Güttel, S., Knizhnerman, L.: Near-optimal perfectly matched layers for indefinite Helmholtz problems. SIAM Rev. 58(1), 90–116 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Druskin, V., Lieberman, C., Zaslavsky, M.: On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems. SIAM J. Sci. Comput. 32(5), 2485–2496 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Givoli, D.: Nonreflecting boundary conditions. J. Comput. Phys. 94(1), 1–29 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Givoli, D., Hagstrom, T., Patlashenko, I.: Finite element formulation with high-order absorbing boundary conditions for time-dependent waves. Comput. Methods Appl. Mech. Eng. 195(29–32), 3666–3690 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Givoli, D., Neta, B.: High-order non-reflecting boundary scheme for time-dependent waves. J. Comput. Phys. 186(1), 24–46 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Givoli, D., Neta, B., Patlashenko, I.: Finite element analysis of time-dependent semi-infinite wave-guides with high-order boundary treatment. Internat J. Numer. Methods Eng. 58(13), 1955–1983 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Goldstein, C.I.: A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains. Math. Comput. 39(160), 309–324 (1982)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Güttel, S., Knizhnerman, L.: A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions. BIT 53(3), 595–616 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47–106 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hagstrom, T., Mar-Or, A., Givoli, D.: High-order local absorbing conditions for the wave equation: extensions and improvements. J. Comput. Phys. 227(6), 3322–3357 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hagstrom, T., Warburton, T.: Complete radiation boundary conditions: minimizing the long time error growth of local methods. SIAM J. Numer. Anal. 47(5), 3678–3704 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hagstrom, T., Warburton, T., Givoli, D.: Radiation boundary conditions for time-dependent waves based on complete plane wave expansions. J. Comput. Appl. Math. 234(6), 1988–1995 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Harari, I., Patlashenko, I., Givoli, D.: Dirichlet-to-Neumann maps for unbounded wave guides. J. Comput. Phys. 143(1), 200–223 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Higdon, R.L.: Absorbing boundary conditions for difference approximations to the multidimensional wave equation. Math. Comput. 47(176), 437–459 (1986)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Higdon, R.L.: Numerical absorbing boundary conditions for the wave equation. Math. Comput. 49(179), 65–90 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ingerman, D., Druskin, V., Knizherman, L.: Optimal finite difference grids and rational approximationsof the square root. I. Elliptic functions. Commun. Pure Appl. Math. 53, 1039–1066 (2000)CrossRefGoogle Scholar
  23. 23.
    Kim, S.: Analysis of complete radiation boundary conditions for the Helmholtz equation in perturbed waveguides. (Manuscript)Google Scholar
  24. 24.
    Kim, S.: Analysis of the convected Helmholtz equation with a uniform mean flow in a waveguide with complete radiation boundary conditions. J. Math. Anal. Appl. 410(1), 275–291 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kim, S., Pasciak, J.E.: Analysis of a Cartesian PML approximation to acoustic scattering problems in \({\mathbb{R}}^2\). J. Math. Anal. Appl. 370(1), 168–186 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kim, S., Zhang, H.: Optimized Schwarz method with complete radiation transmission conditions for the Helmholtz equation in waveguides. SIAM J. Numer. Anal. 53(3), 1537–1558 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kim, S., Zhang, H.: Optimized double sweep Schwarz method with complete radiation boundary conditions for the Helmholtz equation in waveguides. Comput. Math. Appl. 72(6), 1573–1589 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Knizherman, L., Druskin, V., Zaslavsky, M.: On optimal convergence rate of the rational Krylovsubspace reduction for electromagnetic problems in unbounded domains. SIAM J. Numer. Anal. 47, 953–971 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Koshiba, M., Tsuji, Y., Sasaki, S.: High-performance absorbing boundary conditions for photonic crystal waveguide simulations. Microw. Wirel. Compon. Lett. IEEE 11(4), 152–154 (2001)CrossRefGoogle Scholar
  30. 30.
    Petrushev, P., Popov, V.: Rational Approximation of Real Functions, Volume 28 of Encyclopedia of Mathematics. Cambridge University Press, Cambridge (1987)Google Scholar
  31. 31.
    Rabinovich, D., Givoli, D., Bécache, E.: Comparison of high-order absorbing boundary conditions and perfectly matched layers in the frequency domain. Int. J. Numer. Methods Biomed. Eng. 26(10), 1351–1369 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Saad, Y.: Numerical Methods for Large Eigen Value Problems, vol. 66. Society for Industrial and Applied Mathematics, Philadelphia, PA (2011)CrossRefGoogle Scholar
  33. 33.
    Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Strang, G.: The discrete cosine transform. SIAM Rev. 41(1), 135–147 (1999)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Tsynkov, S.V.: Numerical solution of problems on unbounded domains. A review. Appl. Numer. Math. 27(4), 465–532 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsSouthern Methodist UniversityDallasUSA
  2. 2.Department of Mathematics and Research Institute for Basic SciencesKyung Hee UniversitySeoulKorea

Personalised recommendations