Advertisement

Numerische Mathematik

, Volume 142, Issue 1, pp 149–165 | Cite as

Provably convergent implementations of the subdivision algorithm for the computation of invariant objects

  • Janosch RiegerEmail author
Article
  • 21 Downloads

Abstract

The subdivision algorithm by Dellnitz and Hohmann for the computation of invariant sets of dynamical systems decomposes the relevant region of the state space into boxes and analyzes the induced box dynamics. Its convergence is proved in an idealized setting, assuming that the exact time evolution of these boxes can be computed. In the present article, we show that slightly modified, directly implementable versions of the original algorithm are convergent under very mild assumptions on the dynamical system. In particular, we demonstrate that neither a fine net of sample points nor very accurate approximations of the precise dynamics are necessary to guarantee convergence of the overall scheme.

Mathematics Subject Classification

37N30 65L70 

References

  1. 1.
    Aubin, J.P., Cellina, A.: Differential inclusions. In: Grundlehren der Mathematischen Wissenschaften, vol. 264, Springer, Berlin (1984)Google Scholar
  2. 2.
    Aulbach, B., Rasmussen, M., Siegmund, S.: Approximation of attractors of nonautonomous dynamical systems. Discrete Contin. Dyn. Syst. Ser. B 5(2), 215–238 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cheriyan, V., Kleywegt, A.: A dynamical systems model of price bubbles and cycles. Quant. Finance 16(2), 309–336 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dellnitz, M., Hohmann, A.: A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75(3), 293–317 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36(2), 491–515 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dellnitz, M., Junge, O., Post, M., Thiere, B.: On target for Venus—set oriented computation of energy efficient low thrust trajectories. Celest. Mech. Dyn. Astron. 95(1), 357–370 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dellnitz, M., Klus, S., Ziessler, A.: A set-oriented numerical approach for dynamical systems with parameter uncertainty. SIAM J. Appl. Dyn. Syst. 16(1), 120–138 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124(1), 113–136 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Deuflhard, P., Dellnitz, M., Junge, O., Schütte, C.: Computation of essential molecular dynamics by subdivision techniques. Comput. Mol. Dyn. 4, 98–115 (1998)zbMATHGoogle Scholar
  10. 10.
    Froyland, G., Padberg, K.: Almost-invariant sets and invariant manifolds—connecting probabilistic and geometric descriptions of coherent structures in flows. Phys. D 238(16), 1507–1523 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grüne, L., Junge, O.: A set oriented approach to optimal feedback stabilization. Syst. Control Lett. 54(2), 169–180 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Junge, O.: Rigorous discretization of subdivision techniques. In: International Conference on Differential Equations, vol. 2, World Sci. Publ., River Edge, pp. 916–918 (2000)Google Scholar
  13. 13.
    Marsden, J.E., Ross, S.D.: New methods in celestial mechanics and mission design. Bull. Am. Math. Soc. (N.S.) 43(1), 43–73 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mischaikow, K.: Topological techniques for efficient rigorous computation in dynamics. Acta Numer. 11, 435–477 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pötzsche, C., Rasmussen, M.: Computation of nonautonomous invariant and inertial manifolds. Numer. Math. 112(3), 449–483 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sertl, S., Dellnitz, M.: Global optimization using a dynamical systems approach. J. Glob. Optim. 34(4), 569–587 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesMonash UniversityMelbourneAustralia

Personalised recommendations