Advertisement

Numerische Mathematik

, Volume 140, Issue 3, pp 755–790 | Cite as

An alternative to the Euler–Maclaurin summation formula: approximating sums by integrals only

  • Iosif Pinelis
Article
  • 101 Downloads

Abstract

The Euler–Maclaurin (EM) summation formula is used in many theoretical studies and numerical calculations. It approximates the sum \({\sum \nolimits _{k=0}^{n-1} f(k)}\) of values of a function f by a linear combination of a corresponding integral of f and values of its higher-order derivatives \(f^{(j)}\). An alternative (Alt) summation formula is proposed, which approximates the sum by a linear combination of integrals only, without using high-order derivatives of f. Explicit and rather easy to use bounds on the remainder are given. Extensions to multi-index summation and to sums over lattice polytopes are indicated. Applications to summing possibly divergent series are presented. The Alt formula will in most cases outperform, or greatly outperform, the EM summation formula in terms of the execution time and memory use. One of the advantages of the Alt calculations is that, in contrast with the EM ones, they can be almost completely parallelized. Illustrative examples are given. In one of the examples, where an array of values of the Hurwitz generalized zeta function is computed with high accuracy, it is shown that both our implementation of the EM summation formula and, especially, the Alt formula perform much faster than the built-in Mathematica command HurwitzZeta[].

Mathematics Subject Classification

41A35 (Primary) 26A06 26A36 41A10 41A17 41A25 41A35 41A55 41A58 41A60 41A80 65D10 65D30 65D32 68Q17 (Secondary) 

References

  1. 1.
    Bailey, D.H., Borwein, J.M.: Experimental mathematics: recent developments and future outlook. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited–2001 and Beyond, pp. 51–66. Springer, Berlin (2001)CrossRefGoogle Scholar
  2. 2.
    Bornemann, F.: The SIAM 100-digit challenge: a decade later. Inspirations, ramifications, and other eddies left in its wake. Jahresber. Dtsch. Math.-Ver. 118(2), 87–123 (2016).  https://doi.org/10.1365/s13291-016-0137-2 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2004).  https://doi.org/10.1137/1.9780898717969. (A study in high-accuracy numerical computing, With a foreword by David H. Bailey)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brent, R.P.: Multiple-precision zero-finding methods and the complexity of elementary function evaluation (2010). arXiv:1004.3412, see also http://maths-people.anu.edu.au/~brent/pub/pub028.html
  5. 5.
    Butzer, P.L., Ferreira, P.J.S.G., Schmeisser, G., Stens, R.L.: The summation formulae of Euler–Maclaurin, Abel–Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis. Results Math. 59(3–4), 359–400 (2011).  https://doi.org/10.1007/s00025-010-0083-8 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Candelpergher, B., Gadiyar, H.G., Padma, R.: Ramanujan summation and the exponential generating function \(\sum ^\infty_{k=0}{z^k\over k!}\zeta ^{\prime }(-k)\). Ramanujan J. 21(1), 99–122 (2010).  https://doi.org/10.1007/s11139-009-9166-0 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fillebrown, S.: Faster computation of Bernoulli numbers. J. Algorithms 13(3), 431–445 (1992).  https://doi.org/10.1016/0196-6774(92)90048-H MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gould, H.W.: Explicit formulas for Bernoulli numbers. Am. Math. Mon. 79, 44–51 (1972).  https://doi.org/10.2307/2978125 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Harvey, D.: A multimodular algorithm for computing Bernoulli numbers. Math. Comput. 79(272), 2361–2370 (2010).  https://doi.org/10.1090/S0025-5718-2010-02367-1 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ierley, G.: Private communication (2017)Google Scholar
  11. 11.
    Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory Graduate Texts in Mathematics, vol. 84, 2nd edn. Springer, New York (1990).  https://doi.org/10.1007/978-1-4757-2103-4 CrossRefzbMATHGoogle Scholar
  12. 12.
    Kleinert, H.: Path integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2009).  https://doi.org/10.1142/9789814273572 CrossRefzbMATHGoogle Scholar
  13. 13.
    Knopp, K.: Theory and Application of Infinite Series. Blackie, London (1951)zbMATHGoogle Scholar
  14. 14.
    Knuth, D.E.: Euler’s constant to \(1271\) places. Math. Comput. 16, 275–281 (1962)MathSciNetzbMATHGoogle Scholar
  15. 15.
    MathOverflow: a representation of the Bernoulli numbers. http://mathoverflow.net/questions/252404/a-representation-of-the-bernoulli-numbers#252410 (2016)
  16. 16.
    Pinelis, I.: An alternative to the Euler–Maclaurin formula: approximating sums by integrals only (2015). arXiv:1511.03247 [math.CA]
  17. 17.
    Pinelis, I.: Approximating sums by integrals only: multiple sums and sums over lattice polytopes (2017). arXiv:1705.09159 [math.CA]
  18. 18.
    Sadovskii, M.V.: Quantum Field Theory, De Gruyter Studies in Mathematical Physics, vol. 17. De Gruyter, Berlin (2013).  https://doi.org/10.1515/9783110270358 CrossRefGoogle Scholar
  19. 19.
    Titchmarsh, E.C.: The Theory of Functions. Oxford University Press, Oxford (1958). (Reprint of the second (1939) edition)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations