Advertisement

Numerische Mathematik

, Volume 138, Issue 3, pp 615–633 | Cite as

On rational functions without Froissart doublets

  • Bernhard Beckermann
  • George Labahn
  • Ana C. Matos
Article

Abstract

In this paper we consider the problem of working with rational functions in a numeric environment. A particular problem when modeling with such functions is the existence of Froissart doublets, where a zero is close to a pole. We discuss three different parameters which allow one to monitor the absence of Froissart doublets for a given general rational function. These include the euclidean condition number of an underlying Sylvester-type matrix, a parameter for determining coprimeness of two numerical polynomials and bounds on the spherical derivative. We show that our parameters sharpen those found in a previous paper by two of the authors.

Mathematics Subject Classification

41A21 65F22 

References

  1. 1.
    Baker, G., Graves-Morris, P.: Padé Approximants, Encyclopedia of Mathematics. Cambridge University Press, Cambridge (1996)MATHGoogle Scholar
  2. 2.
    Beckermann, B., Labahn, G.: When are two numerical polynomials relatively prime? J. Symb. Comput. 26, 677–689 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beckermann, B., Matos, A.: Algebraic properties of robust Padé approximants. J. Approx. Theory 190, 91–115 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bessis, D.: Padé approximations in noise filtering. J. Comput. Appl. Math. 66, 85–88 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Corless, R.M., Gianni, P.M., Trager, B.M., Watt, S.M.: The singular value decomposition for polynomial systems. In: Proceedings ISSAC’95, pp. 195–207. ACM Press, Montreal (1995)Google Scholar
  6. 6.
    Cuyt, A., Lee, W-s: Sparse interpolation and rational approximation. In: Hardin, Lubinsky, Simanek, (eds.) Contemporary Mathematics, pp. 229–242. AMS, Providence (2016)Google Scholar
  7. 7.
    Driver, K., Prodinger, H., Schneider, C., Weideman, J.A.C.: Padé approximations to the logarithm II: identities, recurrence and symbolic computation. Ramanujan J 11, 139–158 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Froissart, M.: Approximation de Padé: application à la physique des particules élémentaires. In: RCP, Programme no. 25, vol. 9, pp. 1–13. CNRS, Strasbourg (1969)Google Scholar
  9. 9.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, Cambridge (2013)CrossRefMATHGoogle Scholar
  10. 10.
    Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Springer, New York (1992)CrossRefMATHGoogle Scholar
  11. 11.
    Giesbrecht, M., Labahn, G., Lee, W-s: Symbolic-numeric sparse interpolation of multivariate polynomials. J. Symb. Comput. 44, 943–959 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gonnet, P., Güttel, S., Trefethen, L.N.: Robust Padé approximation via SVD. SIAM Rev. 55, 101–117 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kaltofen, E., Yang, Z.: On exact and approximate interpolation of sparse rational functions. In: Proceedings of ISSAC 2007, pp. 203–210. ACM Press, Waterloo (2007)Google Scholar
  14. 14.
    Mascarenhas, W.F.: Robust Padé approximants may have spurious poles. J. Approx. Theory 189, 76–80 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Peelman, S., van der Herten, J., De Vos, M., Lee, W-s., Van Huffel, S., Cuyt, A.: Sparse reconstruction of correlated multichannel activity. In: IEEE Engineering in Medicine and Biology Society Conference Proceedings, pp. 3897–3900 (2013)Google Scholar
  16. 16.
    Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439, 1024–1039 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rump, S.M.: Structured Perturbations part 1: normwise distances. SIAM J. Matrix Anal. Appl. 25, 1–30 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Schiff, J.L.: Normal Families. Springer, New York (1993)CrossRefMATHGoogle Scholar
  19. 19.
    Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia, USA (2013)Google Scholar
  20. 20.
    Werner, H., Wuytack, L.: On the continuity of the Padé operator. SIAM J. Numer. Anal. 20, 1273–1280 (1983)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Bernhard Beckermann
    • 1
  • George Labahn
    • 2
  • Ana C. Matos
    • 1
  1. 1.Laboratoire Painlevé UMR 8524, UFR Mathématiques – M3Université de LilleVilleneuve d’Ascq CedexFrance
  2. 2.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations