Numerische Mathematik

, Volume 138, Issue 2, pp 365–388 | Cite as

Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type

  • Balázs Kovács
  • Christian LubichEmail author


Semidiscretization in time is studied for a class of quasi-linear evolution equations in a framework due to Kato, which applies to symmetric first-order hyperbolic systems and to a variety of fluid and wave equations. In the regime where the solution is sufficiently regular, we show stability and optimal-order convergence of the linearly implicit and fully implicit midpoint rules and of higher-order implicit Runge–Kutta methods that are algebraically stable and coercive, such as the collocation methods at Gauss nodes.

Mathematics Subject Classification




This work was supported by Deutsche Forschungsgemeinschaft, SFB 1173. We thank two anonymous referees for constructive comments on a previous version.


  1. 1.
    Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comput. 86(306), 1527–1552 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 16, 46–57 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Hoboken (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Crouzeix, M.: Sur l’approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge–Kutta. Thèse d’Etat, Univ. Paris 6 (1975)Google Scholar
  5. 5.
    Crouzeix, M.: Sur la B-stabilité des méthodes de Runge–Kutta. Numer. Math. 32, 75–82 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Crouzeix, M., Raviart, P.-A.: Approximation des problèmes d’évolution. Lecture Notes, Univ. Rennes (1980)Google Scholar
  7. 7.
    Dekker, K., Verwer, J.G.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, CWI Monographs, vol. 2. North-Holland Publishing Co., Amsterdam (1984)zbMATHGoogle Scholar
  8. 8.
    Dörfler, W., Gerner, H., Schnaubelt, R.: Local well-posedness of a quasilinear wave equation. Appl. Anal. 95, 2110–2123 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dziuk, G., Lubich, C., Mansour, D.: Runge–Kutta time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 32, 394–416 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Frank, R., Schneid, J., Ueberhuber, C.W.: Order results for implicit Runge–Kutta methods applied to stiff systems. SIAM J. Numer. Anal. 22, 515–534 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    González, C., Palencia, C.: Stability of Runge–Kutta methods for quasilinear parabolic problems. Math. Comput. 69(230), 609–628 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hairer, E., Nørsett, S .P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Differential Equations, 2nd edn. Springer, Berlin (1993)zbMATHGoogle Scholar
  13. 13.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)zbMATHGoogle Scholar
  14. 14.
    Hochbruck, M., Pažur, T.: Implicit Runge–Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations. SIAM J. Numer. Anal. 53, 485–507 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hochbruck, M., Pažur, T.: Error analysis of implicit Euler methods for quasilinear hyperbolic evolution equations. Numer. Math. 135(2), 547–569 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hughes, T.J.R., Kato, T., Marsden, J.E.: Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal. 63, 273–294 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations (Proceedings on Symposium, Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Mathematics, vol. 448, pp. 25–70. Springer, Berlin (1975)Google Scholar
  19. 19.
    Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer, Berlin (1995). (Reprint of the 1980 edition)CrossRefGoogle Scholar
  20. 20.
    Lubich, C., Ostermann, A.: Interior estimates for time discretizations of parabolic equations. Appl. Numer. Math. 18, 241–251 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lubich, C., Ostermann, A.: Runge–Kutta approximation of quasi-linear parabolic equations. Math. Comput. 64, 601–627 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mansour, D.: Gauss–Runge–Kutta time discretization of wave equations on evolving surfaces. Numer. Math. 129, 21–53 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Müller, D.: Well-posedness for a general class of quasilinear evolution equations—with applications to Maxwell’s equations. Ph.D. thesis, KIT. (2014)
  24. 24.
    Ostermann, A., Thalhammer, M.: Convergence of Runge–Kutta methods for nonlinear parabolic equations. Appl. Numer. Math. 42(1–3), 367–380 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  26. 26.
    Zlámal, M.: Finite element methods for nonlinear parabolic equations. RAIRO-Analyse numérique 11(1), 93–107 (1977)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations