Skip to main content
Log in

On the stability of the Rayleigh–Ritz method for eigenvalues

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper studies global stability properties of the Rayleigh–Ritz approximation of eigenvalues of the Laplace operator. The focus lies on the ratios \(\hat{\lambda }_k/\lambda _k\) of the kth numerical eigenvalue \(\hat{\lambda }_k\) and the kth exact eigenvalue \(\lambda _k\). In the context of classical finite elements, the maximal ratio blows up with the polynomial degree. For B-splines of maximum smoothness, the ratios are uniformly bounded with respect to the degree except for a few instable numerical eigenvalues which are related to the presence of essential boundary conditions. These phenomena are linked to the inverse inequalities in the respective approximation spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Birkhoff, G., De Boor, C., Swartz, B.K., Wendroff, B.: Rayleigh–Ritz approximation by piecewise cubic polynomials. SIAM J. Numer. Anal. 3(2), 188–203 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Osborn, J.E.: Eigenvalue problems. In: Finite Element Methods (Part 1), Volume 2 of Handbook of Numerical Analysis, pp. 641–787. Elsevier (1991)

  3. Brenner, S.C., Scott, R.L.: The Mathematical Theory of Finite Element Methods, vol. 15, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  4. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, London (2009)

    Book  Google Scholar 

  5. Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dedè, L., Jäggli, C., Quarteroni, A.: Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation. Comput. Methods Appl. Mech. Eng. 284, 320–348 (2015)

    Article  MathSciNet  Google Scholar 

  7. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hughes, T.J.R., Evans, J.A., Reali, A.: Finite element and nurbs approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 272, 290–320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hughes, T.J.R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of \(p\)-method finite elements with \(k\)-method NURBS. Comput. Methods Appl. Mech. Eng. 197(49–50), 4104–4124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput. (2017). doi:10.1007/s10915-017-0394-y

  11. Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  12. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc., Englewood Cliffs (1973)

    MATH  Google Scholar 

  13. Takacs, S., Takacs, T.: Approximation error estimates and inverse inequalities for B-splines of maximum smoothness. Math. Models Methods Appl. Sci. 26, 1411 (2016). doi:10.1142/S0218202516500342

  14. Weyl, H.: Über die asymptotische Verteilung der Eigenwerte. Nachrichten von der Gesellschaft für Wissenschaften zu Göttingen, Mathematisch - Physikalische Klasse 1911(2), 110–117 (1911)

    MATH  Google Scholar 

  15. Zhang, Z.: How many numerical eigenvalues can we trust? J. Sci. Comput. 65(2), 455–466 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Peterseim.

Additional information

D. Gallistl is supported by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173. D. Peterseim and P. Huber are supported by DFG in the Priority Program 1748 “Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis” under the project “Adaptive isogeometric modeling of propagating strong discontinuities in heterogeneous materials” (PE2143/2-1). The authors acknowledge the support given by the Hausdorff Center for Mathematics Bonn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallistl, D., Huber, P. & Peterseim, D. On the stability of the Rayleigh–Ritz method for eigenvalues. Numer. Math. 137, 339–351 (2017). https://doi.org/10.1007/s00211-017-0876-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0876-8

Mathematics Subject Classification

Navigation