Numerische Mathematik

, Volume 137, Issue 2, pp 339–351 | Cite as

On the stability of the Rayleigh–Ritz method for eigenvalues



This paper studies global stability properties of the Rayleigh–Ritz approximation of eigenvalues of the Laplace operator. The focus lies on the ratios \(\hat{\lambda }_k/\lambda _k\) of the kth numerical eigenvalue \(\hat{\lambda }_k\) and the kth exact eigenvalue \(\lambda _k\). In the context of classical finite elements, the maximal ratio blows up with the polynomial degree. For B-splines of maximum smoothness, the ratios are uniformly bounded with respect to the degree except for a few instable numerical eigenvalues which are related to the presence of essential boundary conditions. These phenomena are linked to the inverse inequalities in the respective approximation spaces.

Mathematics Subject Classification

65N12 65N15 65N30 


  1. 1.
    Birkhoff, G., De Boor, C., Swartz, B.K., Wendroff, B.: Rayleigh–Ritz approximation by piecewise cubic polynomials. SIAM J. Numer. Anal. 3(2), 188–203 (1966)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Babuška, I., Osborn, J.E.: Eigenvalue problems. In: Finite Element Methods (Part 1), Volume 2 of Handbook of Numerical Analysis, pp. 641–787. Elsevier (1991)Google Scholar
  3. 3.
    Brenner, S.C., Scott, R.L.: The Mathematical Theory of Finite Element Methods, vol. 15, 3rd edn. Springer, New York (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, London (2009)CrossRefGoogle Scholar
  5. 5.
    Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dedè, L., Jäggli, C., Quarteroni, A.: Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation. Comput. Methods Appl. Mech. Eng. 284, 320–348 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hughes, T.J.R., Evans, J.A., Reali, A.: Finite element and nurbs approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 272, 290–320 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hughes, T.J.R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of \(p\)-method finite elements with \(k\)-method NURBS. Comput. Methods Appl. Mech. Eng. 197(49–50), 4104–4124 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput. (2017). doi: 10.1007/s10915-017-0394-y
  11. 11.
    Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998)MATHGoogle Scholar
  12. 12.
    Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc., Englewood Cliffs (1973)MATHGoogle Scholar
  13. 13.
    Takacs, S., Takacs, T.: Approximation error estimates and inverse inequalities for B-splines of maximum smoothness. Math. Models Methods Appl. Sci. 26, 1411 (2016). doi: 10.1142/S0218202516500342
  14. 14.
    Weyl, H.: Über die asymptotische Verteilung der Eigenwerte. Nachrichten von der Gesellschaft für Wissenschaften zu Göttingen, Mathematisch - Physikalische Klasse 1911(2), 110–117 (1911)MATHGoogle Scholar
  15. 15.
    Zhang, Z.: How many numerical eigenvalues can we trust? J. Sci. Comput. 65(2), 455–466 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut für Angewandte und Numerische MathematikKarlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Institut für Numerische SimulationUniversität BonnBonnGermany
  3. 3.Institut für MathematikUniversität AugsburgAugsburgGermany

Personalised recommendations