Numerische Mathematik

, Volume 137, Issue 1, pp 229–255

# Uniquely solvable and energy stable decoupled numerical schemes for the Cahn–Hilliard–Stokes–Darcy system for two-phase flows in karstic geometry

Article

## Abstract

We propose and analyze two novel decoupled numerical schemes for solving the Cahn–Hilliard–Stokes–Darcy (CHSD) model for two-phase flows in karstic geometry. In the first numerical scheme, we explore a fractional step method (operator splitting) to decouple the phase-field (Cahn–Hilliard equation) from the velocity field (Stokes–Darcy fluid equations). To further decouple the Stokes–Darcy system, we introduce a first order pressure stabilization term in the Darcy solver in the second numerical scheme so that the Stokes system is decoupled from the Darcy system and hence the CHSD system can be solved in a fully decoupled manner. We show that both decoupled numerical schemes are uniquely solvable, energy stable, and mass conservative. Ample numerical results are presented to demonstrate the accuracy and efficiency of our schemes.

### Mathematics Subject Classification

35K61 76T99 76S05 76D07

### References

1. 1.
Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 3, 197–207 (1967). doi:10.1017/S0022112067001375
2. 2.
Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8(1), 1–25 (2010)
3. 3.
Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Analysis and finite element approximation of a coupled, continuum pipe-flow/Darcy model for flow in porous media with embedded conduits. Numer. Methods Partial Differ. Equ. 27(5), 1242–1252 (2011). doi:10.1002/num.20579
4. 4.
Cesmelioglu, A., Girault, V., Rivière, B.: Time-dependent coupling of Navier–Stokes and Darcy flows. ESAIM Math. Model. Numer. Anal. 47(2), 539–554 (2013). doi:10.1051/m2an/2012034
5. 5.
Çeşmelioğlu, A., Rivière, B.: Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow. J. Numer. Math. 16(4), 249–280 (2008). doi:10.1515/JNUM.2008.012
6. 6.
Çeşmelioğlu, A., Rivière, B.: Existence of a weak solution for the fully coupled Navie-r-Stokes/Darcy-transport problem. J. Differ. Equ. 252(7), 4138–4175 (2012). doi:10.1016/j.jde.2011.12.001
7. 7.
Chen, J., Sun, S., Wang, X.P.: A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268, 1–16 (2014). doi:10.1016/j.jcp.2014.02.043
8. 8.
Chen, N., Gunzburger, M., Wang, X.: Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system. J. Math. Anal. Appl. 368(2), 658–676 (2010). doi:10.1016/j.jmaa.2010.02.022
9. 9.
Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49(3), 1064–1084 (2011). doi:10.1137/080740556
10. 10.
Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second-order methods for the Stokes–Darcy system. SIAM J. Numer. Anal. 51(5), 2563–2584 (2013). doi:10.1137/120897705
11. 11.
Chen, W., Gunzburger, M., Sun, D., Wang, X.: An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system. Numer. Math. (2015). doi:10.1007/s00211-015-0789-3
12. 12.
Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier–Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009). doi:10.1016/j.cma.2009.08.012
13. 13.
Chorin, A.J.: The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73, 928–931 (1967)
14. 14.
Collins, C., Shen, J., Wise, S.M.: An efficient, energy stable scheme for the Cahn–Hilliard–Brinkman system. Commun. Comput. Phys. 13(4), 929–957 (2013). doi:10.4208/cicp.171211.130412a
15. 15.
Diegel, A.E., Feng, X.H., Wise, S.M.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015). doi:10.1137/130950628
16. 16.
Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002). doi:10.1016/S0168-9274(02)00125-3
17. 17.
Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of the Stokes and Darcy equations. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Applications, vol. 320, pp. 3–20. Springer, Milan (2003)Google Scholar
18. 18.
Discacciati, M., Quarteroni, A.: Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22(2), 315–426 (2009). doi:10.5209/rev_REMA.2009.v22.n2.16263
19. 19.
Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Mater. Res. Soc. Sympos. Proc., vol. 529, pp. 39–46. MRS, Warrendale (1998). doi:10.1557/PROC-529-39
20. 20.
Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). doi:10.1007/978-3-642-61623-5
21. 21.
Grn, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51(6), 3036–3061 (2013). doi:10.1137/130908208
22. 22.
Guermond, J.L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41(1), 112–134 (2003). doi:10.1137/S0036142901395400. (electronic)
23. 23.
Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013). doi:10.1016/j.jcp.2012.09.020
24. 24.
Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014). doi:10.1016/j.jcp.2014.07.038
25. 25.
Han, D., Sun, D., Wang, X.: Two-phase flows in karstic geometry. Math. Methods Appl. Sci. 37(18), 3048–3063 (2014). doi:10.1002/mma.3043
26. 26.
Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015). doi:10.1016/j.jcp.2015.02.046
27. 27.
Han, D., Wang, X.: Decoupled energy-law preserving numerical schemes for the Cahn–Hilliard–Darcy system. Numer. Methods Partial Differ. Equ. 32(3), 936–954 (2016). doi:10.1002/num.22036
28. 28.
Han, D., Wang, X., Wu, H.: Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry. J. Differ. Equ. 257(10), 3887–3933 (2014). doi:10.1016/j.jde.2014.07.013
29. 29.
Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)
30. 30.
Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228(15), 5323–5339 (2009). doi:10.1016/j.jcp.2009.04.020
31. 31.
Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000). doi:10.1137/S003613999833678X. (electronic)
32. 32.
Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Math. Proc. Camb. Philos. Soc. 73, 231–238 (1973). doi:10.1017/S0305004100047642
33. 33.
Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound 10(1), 15–43 (2008). doi:10.4171/IFB/178
34. 34.
Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004). doi:10.1016/j.jcp.2003.07.035
35. 35.
Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985). doi:10.1016/0021-9991(85)90148-2
36. 36.
Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002). doi:10.1137/S0036142901392766
37. 37.
Magaletti, F., Picano, F., Chinappi, M., Marino, L., Casciola, C.M.: The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95–126 (2013). doi:10.1017/jfm.2012.461
38. 38.
Marchuk, G.: 3-The splitting-up method. In: Marchuk, G. (ed.) Numerical Methods in Weather Prediction, pp. 84–115. Academic Press, Cambridge (1974). doi:10.1016/B978-0-12-470650-7.50008-6 Google Scholar
39. 39.
Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer. Methods Partial Differ. Equ. 29(2), 584–618 (2013). doi:10.1002/num.21721
40. 40.
Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput. 79(270), 707–731 (2010). doi:10.1090/S0025-5718-09-02302-3
41. 41.
Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)
42. 42.
Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: second-order schemes. Math. Comput. 65(215), 1039–1065 (1996). doi:10.1090/S0025-5718-96-00750-8
43. 43.
Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In: Multiscale Modeling and Analysis for Materials Simulation, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 22, pp. 147–195. World Sci. Publ., Hackensack(2012). doi:10.1142/9789814360906_0003
44. 44.
Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012). doi:10.1137/110822839
45. 45.
Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010). doi:10.3934/dcds.2010.28.1669
46. 46.
Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32(3), 1159–1179 (2010). doi:10.1137/09075860X
47. 47.
Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015). doi:10.1137/140971154
48. 48.
Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)
49. 49.
Temam, R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bull. Soc. Math. France 96, 115–152 (1968)
50. 50.
Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)
51. 51.
van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7(3), 870–891 (1986). doi:10.1137/0907059
52. 52.
Wang, X.: Numerical algorithms for stationary statistical properties of dissipative dynamical systems. Discrete Contin. Dyn. Syst. 36(8), 4599–4618 (2016). doi:10.3934/dcds.2016.36.4599
53. 53.
Wise, S.M.: Unconditionally stable finite difference, nonlinearmultigrid simulation of the Cahn–Hilliard–Hele–Shaw systemof equations. J. Sci. Comput. 44(1), 38–68 (2010). doi:10.1007/s10915-010-9363-4
54. 54.
Yanenko, N.N.: The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer, New York (1971). (Translated from the Russian by T. Cheron. English translation edited by M. Holt)Google Scholar