Numerische Mathematik

, Volume 136, Issue 4, pp 1117–1137 | Cite as

An exponential-type integrator for the KdV equation

  • Martina Hofmanová
  • Katharina SchratzEmail author


We introduce an exponential-type time-integrator for the KdV equation and prove its first-order convergence in \(H^1\) for initial data in \(H^3\). Furthermore, we outline the generalization of the presented technique to a second-order method.



K. Schratz gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173.


  1. 1.
    Bourgain, J.: Fourier transform restriction phenomena forcertain lattice subsets and applications to nonlinear evolutionequations. Part II: The KdV-equation. Geom. Funct. Anal. 3, 209–262 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Einkemmer, L., Ostermann, A.: A splitting approach for the Kadomtsev–Petviashvili equation. J. Comput. Phys. 299, 716–730 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Faou, E.: Geometric Numerical Integration and Schrödinger Equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2012)Google Scholar
  4. 4.
    Gauckler, L.: Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J. Numer. Anal. 31, 1082–1106 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gubinelli, M.: Rough solutions for the periodic Korteweg-de Vries equation. Comm. Pure Appl. Anal. 11, 709–733 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd edn. Springer, Berlin (1993)zbMATHGoogle Scholar
  7. 7.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  8. 8.
    Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Holden, H., Karlsen, K.H., Risebro, N.H.: Operator splitting methods for generalized Korteweg-de Vries equations. J. Comput. Phys. 153, 203–222 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Holden, H., Karlsen, K.H., Lie, K.-A., Risebro, N.H.: Splitting for Partial Differential Equations with Rough Solutions. European Math. Soc. Publishing House, Zürich (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Holden, H., Karlsen, K.H., Risebro, N.H., Tao, T.: Operator splitting methods for the Korteweg-de Vries equation. Math. Comp. 80, 821–846 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Holden, H., Lubich, C., Risebro, N.H.: Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comp. 82, 173–185 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Klein, C.: Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation. ETNA 29, 116–135 (2008)zbMATHGoogle Scholar
  15. 15.
    Lawson, J.D.: Generalized Runge–Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4, 372–380 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77, 2141–2153 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Maday, Y., Quarteroni, A.: Error analysis for spectral approximation of the Korteweg-de Vries equation. RAIRO -Modélisation mathématique et analyse numérique 22, 821–846 (1988)MathSciNetzbMATHGoogle Scholar
  18. 18.
    McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis. American Mathematical Society, Providence (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Tappert, F.: Numerical solutions of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method. In: Newell, A.C. (ed.) Nonlinear Wave Motion, pp. 215–216. American Mathematical Society, Providence (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of MathematicsTechnical University BerlinBerlinGermany
  2. 2.Fakultät für MathematikKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations