Numerische Mathematik

, Volume 136, Issue 3, pp 603–649 | Cite as

Numerical homogenization method for parabolic advection–diffusion multiscale problems with large compressible flows



We introduce a numerical homogenization method based on a discontinuous Galerkin finite element heterogeneous multiscale method to efficiently approximate the effective solution of parabolic advection–diffusion problems with rapidly varying coefficients, large Péclet number and compressible flows. To estimate the missing data of an effective model, numerical upscaling is performed which accurately captures the effects of microscopic solenoidal or gradient flow at a macroscopic scale such as enhancement or depletion of the effective diffusion. For compressible flow with periodic data, we derive sharp a priori error estimates for the macro and micro discretization errors which are robust in the advection dominated regime. Numerical tests confirm the error estimates for problems with periodic data and illustrate the applicability of our method for problems with non-periodic data.

Mathematics Subject Classification

65N12 35K15 74Q10 76N99 


  1. 1.
    Abdulle, A.: Multiscale methods for advection-diffusion problems. Discrete Contin. Dyn. Syst., suppl., 2005, 11–21 (2005)Google Scholar
  2. 2.
    Abdulle, A.: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. In: Multiple scales problems in biomathematics, mechanics, physics and numerics, vol. 31 of GAKUTO International Series Mathematical Sciences and Applications, Gakkōtosho, Tokyo, pp. 133–181 (2009)Google Scholar
  3. 3.
    Abdulle, A.: A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 16, 280–305 (2011)MathSciNetMATHGoogle Scholar
  4. 4.
    Abdulle, A., Attinger, S.: Homogenization method for transport of DNA particles in heterogeneous arrays. Multiscale modelling and simulation, vol. 39 of Lecture Notes in Computer Science Engineering, Springer, Berlin, pp. 23–33 (2004)Google Scholar
  5. 5.
    Abdulle, A., Huber, M.E.: Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems. M2AN. Math. Model. Numer. Anal. 50(6), 1659–1697 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Abdulle, A., Huber, M.E.: Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales. Numer. Math. 126, 589–633 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Abdulle, A., Medovikov, A.A.: Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 90, 1–18 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Abdulle, A., Vilmart, G.: PIROCK: a swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion–advection–reaction problems with or without noise. J. Comput. Phys. 242, 869–888 (2013)Google Scholar
  9. 9.
    Abdulle, A., Vilmart, G.: Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Math. Comput. 83, 513–536 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand Co, N.J.-Toronto, Princeton, London (1965)MATHGoogle Scholar
  11. 11.
    Allaire, G., Brizzi, R.: A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4, 790–812 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Allaire, G., Orive, R.: Homogenization of periodic non self-adjoint problems with large drift and potential. ESAIM Control Optim. Calc. Var. 13, 735–749 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Allaire, G., Pankratova, I., Piatnitski, A.L.: Homogenization and concentration for a diffusion equation with large convection in a bounded domain. J. Funct. Anal. 262, 300–330 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Allaire, G., Raphael, A.-L.: Homogenization of a convection–diffusion model with reaction in a porous medium. C. R. Math. Acad. Sci. Paris 344, 523–528 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ayuso, B., Marini, L.D.: Discontinuous Galerkin methods for advection–diffusion–reaction problems. SIAM J. Numer. Anal. 47, 1391–1420 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland Publishing Co., Amsterdam (1978)MATHGoogle Scholar
  18. 18.
    Bhattacharya, R.: A central limit theorem for diffusions with periodic coefficients. Ann. Probab. 13, 385–396 (1985)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Brezzi, F., Marini, L.D., Süli, E.: Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14, 1893–1903 (2004)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Burman, E.: Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: elliptic equations. SIAM J. Sci. Comput. 35, A2752–A2780 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Capdeboscq, Y.: Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Ser. I Math. 327, 807–812 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Capuzzo-Dolcetta, I., Finzi Vita, S.: Finite element approximation of some indefinite elliptic problems. Calcolo 25(1988), 379–395 (1989)MathSciNetMATHGoogle Scholar
  23. 23.
    Chainais-Hillairet, C., Droniou, J.: Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions. IMA J. Numer. Anal. 31, 61–85 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ciarlet, P.G.: The finite element method for elliptic problems. vol. 4 of Studies in Mathematics and its Applications, North-Holland (1978)Google Scholar
  25. 25.
    Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Donato, P., Piatnitski, A.L.: Averaging of nonstationary parabolic operators with large lower order terms. In: Multi scale problems and asymptotic analysis, vol. 24 of GAKUTO International Series Mathematics Science Appl., Gakkōtosho, Tokyo, pp. 153–165 (2006)Google Scholar
  27. 27.
    Du, R., Ming, P.: Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 8, 863–885 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    E, W., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)Google Scholar
  29. 29.
    Feistauer, M., Hájek, J., Švadlenka, K.: Space-time discontinuous Galerkin method for solving nonstationary convection–diffusion–reaction problems. Appl. Math. 52, 197–233 (2007)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Feistauer, M., Švadlenka, K.: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems. J. Numer. Math. 12, 97–117 (2004)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Henning, P., Ohlberger, M.: A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete Contin. Dyn. Syst. Ser. S 9(5), 1393–1420 (2016)Google Scholar
  32. 32.
    Henning, P., Ohlberger, M.: The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Netw. Heterog. Media 5, 711–744 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Hill, T.R., Reed, W.H.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973)Google Scholar
  34. 34.
    Holding, T., Hutridurga, H., Rauch, J.: Convergence along mean flows. SIAM J. Math. Anal., arXiv e-print: arXiv:1603.00424 (2016)
  35. 35.
    Hou, T.Y., Park, P.J.: Multiscale numerical methods for singularly perturbed convection–diffusion equations. Int. J. Comput. Methods 1, 17–65 (2004)CrossRefMATHGoogle Scholar
  36. 36.
    Houston, P., Schwab, C., Süli, E.: Discontinuous \(hp\)-finite element methods for advection–diffusion–reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Huber, M.E.: Numerical homogenization methods for advection-diffusion and nonlinear monotone problems with multiple scales. PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne (2015)Google Scholar
  38. 38.
    Jikov, V.V.: Asymptotic behavior and stabilization of solutions of a second-order parabolic equation with lowest terms. Trudy Moskov. Mat. Obshch. 46, 69–98 (1983)MathSciNetGoogle Scholar
  39. 39.
    Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)CrossRefGoogle Scholar
  40. 40.
    Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46, 1–26 (1986)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Karátson, J., Korotov, S., Křížek, M.: On discrete maximum principles for nonlinear elliptic problems. Math. Comput. Simul. 76, 99–108 (2007)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Kavaliou, K., Tobiska, L.: A finite element method for a noncoercive elliptic problem with Neumann boundary conditions. Comput. Methods Appl. Math. 12, 168–183 (2012)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Kozlov, S.M.: Reducibility of quasiperiodic differential operators and averaging. Trudy Moskov. Mat. Obshch. 46, 99–123 (1983)MathSciNetGoogle Scholar
  44. 44.
    Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237–574 (1999)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Marušić-Paloka, E., Piatnitski, A.L.: Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection. J. Lond. Math. Soc. 72(2), 391–409 (2005)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Ouaki, F., Allaire, G., Desroziers, S., Enchéry, G.: A priori error estimate of a multiscale finite element method for transport modeling. SeMA J. 67, 1–37 (2015)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Ouaki, F., Allaire, G., Enchéry, G., Desroziers, S.: A multiscale finite element method for transport modelling. In: CD-ROM Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna University of Technology, Austria (2012)Google Scholar
  49. 49.
    Pavliotis, G.A.: Homogenization theory for advection–diffusion equations with mean flow. Ph.D. thesis, Rensselaer Polytechnic Institute, New York (2002)Google Scholar
  50. 50.
    Pavliotis, G.A., Stuart, A.M.: Periodic homogenization for inertial particles. Phys. D 204, 161–187 (2005)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Text in Applied Mathematics, vol. 53. Springer, New York (2008)MATHGoogle Scholar
  52. 52.
    Sobotíková, V.: Numerical integration in the DGFEM for 3D nonlinear convection-diffusion problems on nonconforming meshes. Numer. Funct. Anal. Optim. 29, 927–958 (2008)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Sobotíková, V., Feistauer, M.: Effect of numerical integration in the DGFEM for nonlinear convection–diffusion problems. Numer. Methods Partial Differ. Equ. 23, 1368–1395 (2007)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52, 273–298 (2005)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Xu, J., Zikatanov, L.: A monotone finite element scheme for convection–diffusion equations. Math. Comput. 68, 1429–1446 (1999)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Yue, X., E, W.: The local microscale problem in the multiscale modeling of strongly heterogeneous media: effects of boundary conditions and cell size. J. Comput. Phys. 222, 556–572 (2007)Google Scholar
  57. 57.
    Zeidler, E., Nonlinear functional analysis and its applications. II, A. Springer, New York,: Linear monotone operators (Translated from the German by the author and Leo F, Boron) (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.ANMC, Mathematics SectionÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations