Advertisement

Numerische Mathematik

, Volume 136, Issue 3, pp 805–839 | Cite as

A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

  • Huangxin Chen
  • Shuyu SunEmail author
Article
  • 375 Downloads

Abstract

In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.

Mathematics Subject Classification

65N12 65N15 65N30 

Notes

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable comments and suggestions that led to an improved presentation of this paper.

References

  1. 1.
    Achdou, Y., Bernardi, C., Coquel, F.: A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations. Numer. Math. 96, 17–42 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adams, R.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  3. 3.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ainsworth, M.: A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements. SIAM J. Numer. Anal. 30, 189–204 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Alboin, C., Jaffré, J., Roberts, J.E., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. In: Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment (South Hadley, MA, 2001). Contemporary Mathematics, vol. 295, pp. 13–24 (2002)Google Scholar
  6. 6.
    Babuška, I., Gatica, G.N.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48, 498–523 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barenblatt, G., Zheltov, Y., Kochina, I.: Basic concepts in the theory of seepage of homogeneous fluids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)CrossRefzbMATHGoogle Scholar
  8. 8.
    Baca, R., Arnett, R., Langford, D.: Modeling fluid flow in fractured porous rock masses by finite element techniques. Int. J. Num. Methods Fluids 4, 337–348 (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Barrios, T.P., Bustinza, R.: An a posteriori error analysis of an augmented discontinuous Galerkin formulation for Darcy flow. Numer. Math. 120, 231–269 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33, 2431–2444 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Byfut, A., Gedicke, J., Günther, D., Reininghaus, J., Wiedemann, S., et al.: FFW Documentation. Humboldt University of Berlin, Germany (2007)Google Scholar
  13. 13.
    Cai, Z., Zhang, S.: Recovery-based error estimators for interface problems: mixed and nonconforming finite elements. SIAM J. Numer. Anal. 48, 30–52 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cai, J., Sun, S.: Fractal analysis of fracture increasing spontaneous imbibition in porous media saturated with gas. Int. J. Mod. Phys. C 24, 1350056 (2013)CrossRefGoogle Scholar
  15. 15.
    Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66, 465–476 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, H., Salama, A., Sun, S.: Adaptive mixed finite element methods for Darcy flow in fractured porous media. Water Resour. Res. (2016). doi: 10.1002/2015WR018450 Google Scholar
  17. 17.
    Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193, 2565–2580 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Demkowicz, L.: Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations. Lecture Notes in Mathematics. Springer, Berlin (2008)Google Scholar
  19. 19.
    Dong, C., Sun, S., Taylor, G.A.: Numerical modeling of contaminant transport in fractured porous media using mixed finite element and finite volume methods. J. Porous Media. 14, 219–242 (2011)CrossRefGoogle Scholar
  20. 20.
    Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized non-linear stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47, 929–952 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures. ESAIM Math. Model. Numer. Anal. 48, 1089–1116 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Frih, N., Roberts, J.E., Saada, A.: Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12, 91–104 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fumagalli, A.: Numerical Modelling of Flows in Fractured Porous Media by the XFEM Method. Ph.D. thesis. Politecnico di Milano (2012)Google Scholar
  24. 24.
    Gebauer, S., Neunhäuserer, L., Kornhuber, R., Ochs, S., Hinkelmann, R., Helmig, R.: Equidimensional modelling of flow and transport processes in fractured porous systems I. Dev. Water Sci. 47, 335–342 (2002)CrossRefGoogle Scholar
  25. 25.
    Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gopalakrishnan, J., Qiu, W.: Partial expansion of a Lipschitz domain and some applications. Front. Math. China 7, 249–272 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hoteit, H., Firoozabadi, A.: Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media. Water Resour. Res. 41, W11412 (2005)CrossRefGoogle Scholar
  28. 28.
    Hoteit, H., Firoozabadi, A.: An efficient numerical model for incompressible two-phase flow in fractured media. Adv. Water Resour. 31, 891–905 (2008)CrossRefGoogle Scholar
  29. 29.
    Kim, K.: A posteriori error analysis for locally conservative mixed methods. Math. Comput. 76, 43–66 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75, 1659–1674 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26, 1667–1691 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Moortgat, J., Sun, S., Firoozabadi, A.: Compositional modeling of three-phase flow with gravity using higher-order finite element methods. Water Resour. Res. 47, W05511 (2011)CrossRefGoogle Scholar
  33. 33.
    Noorishad, J., Mehran, M.: An upstream finite element method for solution of transient transport equation in fractured porous media. Water Resour. Res. 18, 588–596 (1982)CrossRefGoogle Scholar
  34. 34.
    Pruess, K., Narasimhan, T.: A practical method for modeling fluid and heat flow in fractured porous media. SPE J. 25, 14–26 (1985)CrossRefGoogle Scholar
  35. 35.
    Scott, R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Song, P., Sun, S.: Contaminant flow and transport simulation in cracked porous media using locally conservative schemes. Adv. Appl. Math. Mech. 4, 389–421 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 2, 245–269 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sun, S., Wheeler, M.F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43, 195–219 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sun, S., Wheeler, M.F.: L2(H1) norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems. J. Sci. Comput. 22, 501–530 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Tang, T., Xu, J.: Adaptive Computations: Theory and Algorithms. Science Press, Beijing (2007)Google Scholar
  41. 41.
    Verfürth, R.: A posteriori error estimates and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)zbMATHGoogle Scholar
  43. 43.
    Warren, J., Root, P.: The behavior of naturally fractured reservoirs. SPE J. 3, 245–255 (1963)Google Scholar
  44. 44.
    Wu, Y.S., Pruess, K.: A multiple-porosity method for simulation of naturally fractured petroleum reservoirs. SPE Reserv. Eng. 3, 327–336 (1988)CrossRefGoogle Scholar
  45. 45.
    Zidane, A., Firoozabadi, A.: An efficient numerical model for multicomponent compressible flow in fractured porous media. Adv. Water Resour. 74, 127–147 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific ComputingXiamen UniversityXiamenChina
  2. 2.Computational Transport Phenomena Laboratory, Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations