Numerische Mathematik

, Volume 136, Issue 2, pp 439–466 | Cite as

Sampling inequalities for sparse grids

Article

Abstract

Sampling inequalities play an important role in deriving error estimates for various reconstruction processes. They provide quantitative estimates on a Sobolev norm of a function, defined on a bounded domain, in terms of a discrete norm of the function’s sampled values and a smoothness term which vanishes if the sampling points become dense. The density measure, which is typically used to express these estimates, is the mesh norm or Hausdorff distance of the discrete points to the bounded domain. Such a density measure intrinsically suffers from the curse of dimension. The curse of dimension can be circumvented, at least to a certain extend, by considering additional structures. Here, we will focus on bounded mixed regularity. In this situation sparse grid constructions have been proven to overcome the curse of dimension to a certain extend. In this paper, we will concentrate on a special construction for such sparse grids, namely Smolyak’s method and provide sampling inequalities for mixed regularity functions on such sparse grids in terms of the number of points in the sparse grid. Finally, we will give some applications of these sampling inequalities.

Mathematics Subject Classification

65D10 65D07 41A25 41A63 

References

  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)MATHGoogle Scholar
  2. 2.
    Arcangéli, R., de Silanes, M.C.L., Torrens, J.J.: An extension of a bound for functions in Sobolev spaces, with applications to \((m, s)\)-spline interpolation and smoothing. Numer. Math. 107, 181–211 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bungartz, H.J., Griebel, M.: Sparse grids. In: Iserles, A. (ed.) Acta Numerica, vol. 13, pp. 1–123. Cambridge University Press, Cambridge (2004)Google Scholar
  5. 5.
    Byrenheid, G., Dung, D., Sickel, W., Ullrich, T.: Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in \({H}\). ArXiv e-prints (2014). arXiv:1408.3498 [math.NA]
  6. 6.
    Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill Book Company, New York (1966)MATHGoogle Scholar
  7. 7.
    De Vore, R., Lorentz, G.: Constructive Approximation. Grundlehren der mathematischen Wisenschaften. Springer, Berlin (1993)Google Scholar
  8. 8.
    Garcke, J., Hegland, M.: Fitting multidimensional data using gradient penalties and the sparse grid combination technique. Computing 84, 1–25 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Griebel, M.: Sparse grids for higher dimensional problems. In: Pardo, L.M., Pinkus, A., Süli, E., Todd, M.J. (eds.) Foundations of Computational Mathematics, Santander 2005, pp. 106–161. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  10. 10.
    Jetter, K., Stöckler, J., Ward, J.: Error estimates for scattered data interpolation on spheres. Math. Comput. 68, 733–747 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Krebs, J.: Support vector regression for the solution of linear integral equations. Inverse Probl. 27(6), 065,007 (23 pages) (2011)Google Scholar
  12. 12.
    Krebs, J., Louis, A.K., Wendland, H.: Sobolev error estimates and a priori parameter selection for semi-discrete tikhonov regularization. J. Inverse Ill Posed Probl. 17, 845–869 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Madych, W.R.: An estimate for multivariate interpolation II. J. Approx. Theory 142, 116–128 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 643–763 (2005)MathSciNetMATHGoogle Scholar
  15. 15.
    Peherstorfer, B., Kowitz, C., Pflüger, D., Bungartz, H.J.: Selected recent applications of sparse grids. Numer. Math. Theory Methods Appl. 8(01), 47–77 (2015). doi:10.4208/nmtma.2015.w05si MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Rieger, C., Schaback, R., Zwicknagl, B.: Sampling and stability. Mathematical Methods for Curves and Surfaces. Lecture Notes in Computer Science, vol. 5862, pp. 347–369. Springer, New York (2010)Google Scholar
  17. 17.
    Rieger, C., Zwicknagl, B.: Deterministic error analysis of support vector machines and related regularized kernel methods. J. Mach. Learn. Res. 10, 2115–2132 (2009)MathSciNetMATHGoogle Scholar
  18. 18.
    Rieger, C., Zwicknagl, B.: Improved exponential convergence rates by oversampling near the boundary. Constr. Approx. 39, 323–341 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Schreiber, A.: Die Methode von Smolyak bei der multivariaten Interpolation. Ph.D. thesis, Universität Göttingen (2000)Google Scholar
  20. 20.
    Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4, 240–243 (1963)MATHGoogle Scholar
  21. 21.
    Ullrich, T.: Smolyak’s algorithm, sampling on sparse grids and Sobolev spaces of dominating mixed smoothness. East J. Approx. 14(1), 1–38 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    Wahba, G.: Spline Models for Observational Data. CBMS-NSF, Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1990)Google Scholar
  23. 23.
    Wasilkowski, G.W., Wozniakowski, H.: Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complex. 11, 156 (1995)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  25. 25.
    Wendland, H., Rieger, C.: Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101, 643–662 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Numerical SimulationUniversity of BonnBonnGermany
  2. 2.University of BayreuthBayreuthGermany

Personalised recommendations