Numerische Mathematik

, Volume 135, Issue 4, pp 1011–1043 | Cite as

Discontinuous Petrov–Galerkin boundary elements



Generalizing the framework of an ultra-weak formulation for a hypersingular integral equation on closed polygons in Heuer and Pinochet (SIAM J Numer Anal: 52(6), 2703–2721, 2014), we study the case of a hypersingular integral equation on open and closed polyhedral surfaces. We develop a general ultra-weak setting in fractional-order Sobolev spaces and prove its well-posedness and equivalence with the traditional formulation. Based on the ultra-weak formulation, we establish a discontinuous Petrov–Galerkin method with optimal test functions and prove its quasi-optimal convergence in related Sobolev norms. For closed surfaces, this general result implies quasi-optimal convergence in the \(L^2\)-norm. Some numerical experiments confirm expected convergence rates.

Mathematics Subject Classification

65N38 65N30 65N12 


  1. 1.
    Ainsworth, M., McLean, W., Tran, T.: The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36, 1901–1932 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bergh, J., Löfström, J.: Interpolation Spaces. Number 223 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin (1976)Google Scholar
  4. 4.
    Bottasso, C.L., Micheletti, S., Sacco, R.: The discontinuous Petrov-Galerkin method for elliptic problems. Comput. Methods Appl. Mech. Eng. 191(31), 3391–3409 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bramwell, J., Demkowicz, L., Gopalakrishnan, J., Qiu, W.: A locking-free \(hp\) DPG method for linear elasticity with symmetric stresses. Numer. Math. 122(4), 671–707 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer series in computational mathematics, vol. 15. Springer-Verlag, New York (1991)Google Scholar
  7. 7.
    Broersen, D., Stevenson, R.: A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form. IMA J. Numer. Anal. 35(1), 39–73 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl, \(\Omega \)) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Buffa, A., Sauter, S.: On the acoustic single layer potential: stabilization and Fourier analysis. SIAM J. Sci. Comput. 28(5):1974–1999 (electronic) (2006)Google Scholar
  10. 10.
    Cessenat, O., Després, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35(1), 255–299 (1998)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chan, J., Heuer, N., Bui-Thanh, T., Demkowicz, L.: Robust DPG method for convection-dominated diffusion problems II: Adjoint boundary conditions and mesh-dependent test norms. Comput. Math. Appl. 67(4), 771–795 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chandler-Wilde, S.N., Graham, I.G.: Boundary integral methods in high frequency scattering. In: Highly oscillatory problems, volume 366 of London Math. Soc. Lecture Note Ser., pp. 154–193. Cambridge Univ. Press, Cambridge (2009)Google Scholar
  13. 13.
    Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Demkowicz, L., Gopalakrishnan, J.: Analysis of the DPG method for the Poisson problem. SIAM J. Numer. Anal. 49(5), 1788–1809 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. Part II. Optimal test functions. Numer. Methods Partial Differ. Equ. 27, 70–105 (2011)CrossRefMATHGoogle Scholar
  17. 17.
    Demkowicz, L., Gopalakrishnan, J., Muga, I., Zitelli, J.: Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Eng. 213–216, 126–138 (2012)Google Scholar
  18. 18.
    Demkowicz, L., Heuer, N.: Robust DPG method for convection-dominated diffusion problems. SIAM J. Numer. Anal. 51(5), 2514–2537 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Després. B.: Sur une formulation variationnelle de type ultra-faible. C. R. Acad. Sci. Paris Sér. I Math. 318(10), 939–944 (1994)Google Scholar
  20. 20.
    Engleder, S., Steinbach, O.: Stabilized boundary element methods for exterior Helmholtz problems. Numer. Math. 110(2), 145–160 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ervin, V.J., Heuer, N.: An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal. 26(2), 297–325 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gatica, G.N., Healey, M., Heuer, N.: The boundary element method with Lagrangian multipliers. Numer. Methods Partial Differ. Equ. 25(6), 1303–1319 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations, volume 5 of Springer series in computational mathematics. Theory and algorithms. Springer-Verlag, Berlin (1986)Google Scholar
  24. 24.
    Gopalakrishnan, J., Qiu, W.: An analysis of the practical DPG method. Math. Comp. 83(286), 537–552 (2014)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman Publishing Inc., Boston (1985)MATHGoogle Scholar
  26. 26.
    Hackbusch, W.: A sparse matrix arithmetic based on \(H\)-matrices. I. Introduction to \(H\)-matrices. Computing 62(2), 89–108 (1999)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Hackbusch, W.: Hierarchische Matrizen: Algorithmen und Analysis. Springer, New York (2009)Google Scholar
  28. 28.
    Heuer, N.: Additive Schwarz method for the \(p\)-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math. 88(3), 485–511 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Heuer, N.: On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417(2), 505–518 (2014)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Heuer, N., Karkulik, M.: A robust DPG method for singularly perturbed reaction-diffusion problems. (2015). arXiv:1509.07560
  31. 31.
    Heuer, N., Karkulik, M., Sayas, F.-J.: Note on discontinuous trace approximation in the practical DPG method. Comput. Math. Appl. 68, 1562–1568 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Heuer, N., Pinochet, F.: Ultra-weak formulation of a hypersingular integral equation on polygons and DPG method with optimal test functions. SIAM J. Numer. Anal. 52(6), 2703–2721 (2014)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Hsiao, G.C., Wendland, W.L.: Boundary integral equations. Springer, New York (2008)Google Scholar
  34. 34.
    Maischak, M.: The analytical computation of the Galerkin elements for the Laplace, Lamé and Helmholtz equation in \(3\)D-BEM. Technical Report 95-16, DFG-Schwerpunkt Randelementmethoden (1995)Google Scholar
  35. 35.
    McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)Google Scholar
  36. 36.
    Nédélec, J.-C.: Integral equations with nonintegrable kernels. Integral Equ. Oper. Theory 5, 562–572 (1982)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Roberts, R.E., Thomas, J.M.: Mixed and hybrid methods. In Ciarlet, P.G., Lions J.L. (eds.) Handbook of numerical analysis. Vol. II, pp. 523–639, North-Holland, Amsterdam (1991)Google Scholar
  38. 38.
    Steinbach, O.: A robust boundary element method for nearly incompressible linear elasticity. Numer. Math. 95(3), 553–562 (2003)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Stephan, E.P.: Boundary integral equations for screen problems in \({\mathbb{R}}^3\). Integral Equ. Oper. Theory 10, 257–263 (1987)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Zitelli, J., Muga, I., Demkowicz, L., Gopalakrishnan, J., Pardo, D., Calo, V.M.: A class of discontinuous Petrov-Galerkin methods. Part IV: the optimal test norm and time-harmonic wave propagation in 1D. J. Comput. Phys. 230(7), 2406–2432 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile

Personalised recommendations