Advertisement

Numerische Mathematik

, Volume 135, Issue 3, pp 711–732 | Cite as

A fictitious domain approach with Lagrange multiplier for fluid-structure interactions

  • Daniele Boffi
  • Lucia GastaldiEmail author
Article

Abstract

We study a recently introduced formulation for fluid-structure interaction problems which makes use of a distributed Lagrange multiplier in the spirit of the fictitious domain method. The time discretization of the problem leads to a mixed problem for which a rigorous stability analysis is provided. The finite element space discretization is discussed and optimal convergence estimates are proved.

Mathematics Subject Classification

65N30 65N12 74F10 

Notes

Acknowledgments

The authors were partially supported by PRIN/MIUR, GNCS/INDAM, and IMATI/CNR.

References

  1. 1.
    Bank, R.E., Yserentant, H.: On the \(H^1\)-stability of the \(L_2\)-projection onto finite element spaces. Numer. Math. 126(2), 361–381 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer series in computational mathematics, vol. 44. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boffi, D., Cavallini, N., Gastaldi, L.: Finite element approach to immersed boundary method with different fluid and solid densities. Math. Models Methods Appl. Sci. 21(12), 2523–2550 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D. Boffi, N. Cavallini, and L. Gastaldi. The finite element immersed boundary method with distributed Lagrange multiplier. SIAM J. Numer. Anal. 53, 2584–2604 (2015)Google Scholar
  5. 5.
    D. Boffi and L. Gastaldi. A finite element approach for the immersed boundary method. Comput. Struct., 81(8–11):491–501, 2003. In honour of Klaus-Jürgen BatheGoogle Scholar
  6. 6.
    Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method. Math. Models Methods Appl. Sci. 17(10), 1479–1505 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.S.: On the hyper-elastic formulation of the immersed boundary method. Comput. Methods Appl. Mech. Eng. 197(25–28), 2210–2231 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the \(L^2\). Math. Comp. 71(237), 147–156 (2002). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brenner, S.C., Scott, R.L.: The mathematical theory of finite element methods, volume 15 of texts in applied mathematics, 3rd edn. Springer, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Carstensen, C.: Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for \(H^1\)-projection onto finite element spaces. Math. Comp. 71(237), 157–163 (2002). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carstensen, C.: An adaptive mesh-refining algorithm allowing for an \(H^1\) stable \(L^2\) projection onto Courant finite element spaces. Constr. Approx. 20(4), 549–564 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Crouzeix, M., Thomée, V.: Resolvent estimates in \(l_p\) for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes. Comput. Methods Appl. Math. 1(1), 3–17 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    F.D. Gaspoz, C.-J. Heine, and K.G. Siebert. Optimal grading of the newest vertex bisection and H1-stability of the L2-projection. IMA J. Numer. Anal., 2015. To appear. doi: 10.1093/imanum/drv044
  14. 14.
    Girault, V., Glowinski, R.: Error analysis of a fictitious domain method applied to a Dirichlet problem. Jpn J. Ind. Appl. Math. 12(3), 487–514 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    V. Girault, R. Glowinski, and T.-W. Pan. A fictitious-domain method with distributed multiplier for the Stokes problem. In Applied nonlinear analysis, pp. 159–174. Kluwer/Plenum, New York, (1999)Google Scholar
  16. 16.
    Glowinski, R., Kuznetsov, Yu.: Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput. Methods Appl. Mech. Eng. 196(8), 1498–1506 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Heltai, L.: On the stability of the finite element immersed boundary method. Comput. Struct. 86(7–8), 598–617 (2008)CrossRefGoogle Scholar
  18. 18.
    Heltai, L., Costanzo, F.: Variational implementation of immersed finite element methods. Comput. Methods Appl. Mech. Eng. 229(232), 110–127 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    D. Kamensky, J.A. Evans, and M.-C. Hsu. Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Commun. Comput. Phys. 18, 1147–1180 (2015)Google Scholar
  20. 20.
    Kamensky, D., Hsu, M.-C., Schillinger, D., Evans, J.A., Aggarwal, A., Bazilevs, Y., Sacks, M.S., Hughes, T.J.R.: An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput. Methods Appl. Mech. Eng. 284, 1005–1053 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, X., Liu, W.K.: Extended immersed boundary method using FEM and RKPM. Comput. Methods Appl. Mech. Eng. 193, 1305–1321 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dipartimento di Matematica “F. Casorati”Università di PaviaPaviaItaly
  2. 2.DICATAM, Università di BresciaBresciaItaly

Personalised recommendations