Numerische Mathematik

, Volume 135, Issue 1, pp 27–71 | Cite as

Frequency-adapted Galerkin boundary element methods for convex scattering problems



We introduce a class of hybrid boundary element methods for the solution of sound soft scattering problems in the exterior of two-dimensional smooth convex obstacles. To facilitate the applicability of our algorithms throughout the entire frequency spectrum, we have enriched our Galerkin approximation spaces, through incorporation of oscillations in the incident field of radiation, into the algebraic and trigonometric polynomial approximation spaces. The resulting methodologies have three distinctive properties. Indeed, from a theoretical point of view (1) they can be tuned to demand only an\(\mathcal {O}(k^{\varepsilon })\)increase (for any \(\varepsilon >0)\)in the number of degrees of freedom to maintain a fixed accuracy with increasing wavenumberk, owing to the optimal adaptation of approximation spaces to asymptotic stretching (shrinking) of illuminated and deep shadow regions (shadow boundaries), and (2) they are convergent for each fixed wavenumberk, thanks to the additional approximation spaces in the deep shadow region. Perhaps more importantly, from a practical point of view (3) they give rise to linear systems with significantly enhanced condition numbers and this, in turn, allows for more accurate solutions if desired.

Mathematics Subject Classification

65N38 78M15 35P25 65N12 



The first author would like to thank Simon Chandler-Wilde (Reading), Víctor Domínguez (Tudela), Ivan G. Graham (Bath), and Valery Smyshlyaev (London) for useful discussions.


  1. 1.
    Abboud, T., Nédélec, J.-C., Zhou, B.: Méthode des équations intégrales pour les hautes fréquences. C. R. Acad. Sci. Paris 318, 165–170 (1994)Google Scholar
  2. 2.
    Abboud, T., Nédélec, J.-C., Zhou, B.: Improvement of the integral equation method for high frequency problems. In: Mathematical and Numerical Aspects of Wave Propagation: Mandelieu-La Napoule. SIAM, Philadelphia, pp. 178–187 (1995)Google Scholar
  3. 3.
    Amini, S., Profit, A.: Multi-level fast multipole solution of the scattering problem. Eng. Anal. Bound. Elem. 27, 547–564 (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Anand, A., Boubendir, Y., Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. II. The three-dimensional scalar case. Numer. Math. 114(3), 373–427 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, Texts in Applied Math, vol. 39. Springer, New York (2009)MATHGoogle Scholar
  6. 6.
    Banjai, L., Hackbusch, W.: Hierarchical matrix techniques for low- and high-frequency Helmholtz problems. IMA J. Numer. Anal. 28(1), 46–79 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bruno, O.P., Geuzaine, C.A.: An \({\cal O}\)(1) integration scheme for three-dimensional surface scattering problems. J. Comput. Appl. Math. 204, 463–476 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bruno, O.P., Domínguez, V., Sayas, F.-J.: Convergence analysis of a high-order Nyström integral-equation method for surface scattering problems. Numer. Math. 124(4), 603–645 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bruno, O.P., Kunyansky, L.A.: A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests and applications. J. Comput. Phys. 169, 80–110 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bruno, O.P., Geuzaine, C.A., Monroe, J.A., Reitich, F.: Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Phil. Trans. R. Soc. London 362, 629–645 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bruno, O.P., Geuzaine, C.A., Reitich, F.: On the \({\cal O}\)(1) solution of multiple-scattering problems. IEEE Trans. Magn. 41, 1488–1491 (2005)CrossRefGoogle Scholar
  13. 13.
    Chandler-Wilde, S.N., Graham, I.G.: Boundary integral methods in high frequency scattering. In: Engquist, F., Hairer, I. (eds.) Highly Oscillatory Problems, pp. 154–193. Cambridge University Press, Cambridge (2012)Google Scholar
  14. 14.
    Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numerica 21, 89–305 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  16. 16.
    Davies, R.W., Morgan, K., Hassan, O.: A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain. Comput. Mech. 44(3), 321–331 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106(3), 471–510 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. I. The two-dimensional case. Numer. Math. 114(2), 271–354 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ganesh, M., Hawkins, S.: A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions. J. Comput. Phys. 230, 104–125 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Giladi, E.: An asymptotically derived boundary element method for the Helmholtz equation in high frequencies. J. Comput. Appl. Math. 198, 52–74 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Giladi, E., Keller, J.B.: A hybrid numerical asymptotic method for scattering problems. J. Comput. Phys. 174, 226–247 (2001)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Giladi, E., Keller, J.B.: An asymptotically derived boundary element method for the Helmholtz equations. In: Proceedings of the 20th Annual Review of Progress in Applied Computational Electromagnetics. Applied Computational Electromagnetics Society, USA (2004)Google Scholar
  23. 23.
    Gottlieb, S., Jung, J.-H.: Numerical issues in the implementation of high order polynomial multi-domain penalty spectral Galerkin methods for hyperbolic conservation laws. Commun. Comput. Phys. 5(2–4), 600–619 (2009)MathSciNetGoogle Scholar
  24. 24.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. A Foundation for Computer Science. Addison-Wesley Publishing Company, Reading (1994)MATHGoogle Scholar
  25. 25.
    Hesthaven, J.S., Warburton, T.: High-order accurate methods for time-domain electromagnetics. CMES Comput. Model. Eng. Sci. 5, 395–408 (2004)MATHGoogle Scholar
  26. 26.
    Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29(6), 2305–2328 (2007)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Keller, J.B.: Geometrical theory of diffraction. J. Opt. Soc. Am. 52, 116–130 (1962)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Keserci, S.: Analysis of convergent integral equation methods for high-frequency scattering. M.S. Thesis, Boğaziçi University, Istanbul (2012)Google Scholar
  29. 29.
    Kress, R.: Linear Integral Equations, 2nd edn. Springer, New York (1999)CrossRefMATHGoogle Scholar
  30. 30.
    Melrose, R.B., Taylor, M.E.: Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle. Adv. Math. 55, 242–315 (1985)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Namburu, R.R., Mark, E.R., Clarke, J.A.: Scalable electromagnetic simulation environment. CMES Comput. Model. Eng. Sci. 5, 443–453 (2004)MATHGoogle Scholar
  32. 32.
    Özen, H.Ç.: Robust high-frequency solvers. M.S. Thesis, Boğaziçi University, Istanbul (2012)Google Scholar
  33. 33.
    Schwab, C.: p- and hp-finite element methods. In: Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, Oxford (1998)Google Scholar
  34. 34.
    Sherer, S.E., Visbal, M.R.: Time-domain scattering simulations using a high-order overset-grid approach. In: Proceedings of the 2005 IEEE Workshop on Computational Electromagnetics in the Time-Domain, pp. 44–47 (2005)Google Scholar
  35. 35.
    Spence, E.A., Chandler-Wilde, S.N., Graham, I.G., Smyshlyaev, V.P.: A new frequency-uniform coercive boundary integral equation for acoustic scattering. Commun. Pure Appl. Math. 64(10), 1384–1415 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Taflove, A., Hagness, S.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Boston (2005)MATHGoogle Scholar
  37. 37.
    Timan, A.F.: Theory of Approximation of Functions of a Real Variable. Dover Publications, USA (1994)Google Scholar
  38. 38.
    Tong, M.S., Chew, W.C.: Multilevel fast multipole acceleration in the Nyström discretization of surface electromagnetic integral equations for composite objects. IEEE Trans. Antenn. Propag. 58(10), 3411–3416 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsBoğaziçi UniversityIstanbulTurkey
  2. 2.Applied Physics and Applied Mathematics Department, The Fu Foundation School of Engineering and Applied ScienceColumbia UniversityNew YorkUSA

Personalised recommendations