Skip to main content
Log in

Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the finite volume approximation for a non-linear parabolic-elliptic system, which describes the aggregation of slime molds resulting from their chemotactic features, called a simplified Keller–Segel system. First, we present a linear finite volume scheme that satisfies both positivity and mass conservations, which are important features of the original system. We derive some inequalities on the discrete free energy. Then, under some assumptions on the regularity of solution, admissible mesh and a priori estimates of the discrete solution, we establish error estimates in \(L^p\) norm with a suitable \(p>2\) for the two dimensional case. In the last part of this paper, we restrict our attention to the radially symmetric solution of chemotaxis system, and we derive some inequalities concerned with the blow-up phenomenon of numerical solution. Several numerical experiments are presented to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Baba, K., Tabata, M.: On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. Numér. 15, 3–25 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Biler, B.: Local and global solvability of some parabolic systems modeling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Bessemoulin-Chatard, M., Chainais-Hilliairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. arXiv:1202.4806

  5. Bessemoulin-Chatard, M., Jüngel, A.: A finite volume scheme for a Keller–Segel model with additional cross-diffusion. IMA J. Numer. 34, 96–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchet, A., Dolbeault, J., Perthame, B.: Two dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions Electron. J. Differ. Equ. 2006, 1–33 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  8. Chou, S., Kwak, DoY, Li, Q.: \(L^p\) error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ. 19, 463–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Childress, S.: Chemotactic collapse in two dimensions. Lecture Notes in Biomath, vol. 55. Springer, Berlin (1984)

  10. Childress, S., Percus, J.K.: Nolinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Crouzeix, M., Thomée, V.: Resolvent estimates in \(l^p\) for discrete laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes. Comput. Methods Appl. Math. 1, 3–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods, Handb. Numer. Anal., vol. VII, pp. 713–1020, North-Holland, Amsterdam (2000)

  14. Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104, 457–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Pitman (1985)

  16. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein. 106, 51–69 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, Berlin (2003)

    MATH  Google Scholar 

  19. Keller, F.F., Segel, L.A.: Initiation on slime mold aggregation viewed as instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  20. Marrocco, A.: 2D simulation of chemotaxis bacteria aggregation. ESAIM: M2AN 37, 617–630 (2003)

  21. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8, 145–156 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Perthame, B.: PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl. Math. 49, 539–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saito, N.: Remarks on the rational approximation of holomorphic semigroups with nonuniform partitions. Japan J. Ind. Appl. Math. 21, 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saito, N.: A holomorphic semigroup approach to the lumped mass finite element method. J. Comput. Appl. Math. 160, 71–85 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saito, N.: Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis. Commun. Pure Appl. Anal. 11, 339–364 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saito, N., Suzuki, T.: Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis. Appl. Math. Comput. 171, 72–90 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Suzuki, T.: Free Energy and Self-Interacting Particles. Birkhauser, Basel (2005)

    Book  MATH  Google Scholar 

  30. Suzuki, T.: Mean Field Theories and Dual Variation—A Mathematical Profile Emerged in the Nonlinear Hierarchy. Atlantis Press, UK (2008)

    Google Scholar 

  31. Suzuki, T., Senba, T.: Applied Analysis: Mathematical Methods in Natural Science. Imperial College Press, London (2004)

    MATH  Google Scholar 

  32. Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  33. Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  34. Yagi, A.: Norm behaviour of solutions to a parabolic system of chemotaxis. Math. Japan 45, 241–256 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanyu Zhou.

Additional information

This work was supported by JST, CREST and JSPS KAKENHI Grant Number 23340023.

Appendix 1: The \(W^{1,p}\) error estimate of the finite volume method with Voronoi mesh for elliptic problem

Appendix 1: The \(W^{1,p}\) error estimate of the finite volume method with Voronoi mesh for elliptic problem

In this appendix section, we consider the \(W^{1,p}\) error estimate of finite volume method for the elliptic problem, which is applied to prove Lemma 4.1. Given any \(u_h \in X_h\), let \(\hat{u}_h = M_h^{-1}u_h \in \hat{X}_h\). We consider the solutions \(v_h \in X_h\) and \(\hat{w}_h\) of discrete problems (3.17) and (4.12), respectively, i.e. \(v_h = G_h u_h\) and \(\hat{w}_h = L_h^{-1}\hat{u}_h\). Let \(\hat{v}_h = M_h^{-1} v_h\). Lemma 4.1 claims the error estimate

$$\begin{aligned} \Vert \hat{v}_h -\hat{w}_h\Vert _{1,p} \le Ch\Vert \hat{u}_h\Vert _{1,p}. \end{aligned}$$

Subtracting (3.17) from (4.12) yields: for any \(\hat{\chi }_h \in \hat{X}_h\),

$$\begin{aligned} (\nabla (\hat{v}_h - \hat{w}_h), \nabla \hat{\chi }_h) + (\hat{v}_h - \hat{w}_h,\hat{\chi }_h) = (\hat{u}_h + \hat{w}_h, \hat{\chi }_h) - (\hat{u}_h + \hat{w}_h, \hat{\chi }_h)_h. \end{aligned}$$
(7.1)

Substituting \(\hat{\chi }_h = \hat{v}_h - \hat{w}_h\) into (7.1), together with (3.14), we obtain

$$\begin{aligned} \Vert \nabla (\hat{v}_h - \hat{w}_h\Vert _2^2 + \Vert \hat{v}_h - \hat{w}_h\Vert ^2 \le Ch \Vert \hat{u}_h + \hat{w}_h\Vert _{1,2}, \end{aligned}$$
(7.2)

which implies (in view of \(\Vert \hat{w}_h\Vert _{1,2} \le C\Vert \hat{u}_h\Vert _2\))

$$\begin{aligned} \Vert \nabla (\hat{v}_h - \hat{w}_h\Vert _{1,2} \le Ch^{1/2} \Vert \hat{u}_h\Vert _{1,2}. \end{aligned}$$
(7.3)

Since \(M_h\) does not satisfies (3.3), we only obtain the \(W^{1,2}\) norm error of order \(O(h^{1/2})\). However, Lemma 4.1 claims the \(W^{1,p}\) norm error is of order O(h) for \(p \in [2,\mu )\).

To tackle this problem, we introduce the solution of continuous elliptic problem (2.1) with u replaced by \(u_h\) (resp. \(\hat{u}_h\)), where the solution is \(G u_h \in \mathscr {W}^p\) (resp. \(G \hat{u}_h \in \mathscr {W}^p\)) with \(2 \le p < \mu \). Here, G is defined by (2.3). By the regularity (2.2) and the error estimate of the finite element method (cf. [32]), we have the error estimate of \(G(u_h - \hat{u}_h)\) and \(\hat{w}_h - G \hat{u}_h\). Then by the triangle inequality, we are left to estimate \(\Vert M_h^{-1}(v_h - G_h u_h)\Vert _{1,p}\) (see the proof of Lemma 4.1), which is the error estimate of the finite volume method with Voronoi mesh for elliptic problem.

In [13], the \(W^{1,2}\) norm error of order O(h) is obtained. In this appendix, we derive the error estimate O(h) of \(W^{1,p}\) norm.

In the following, we extend the method of Chou et al. [8, Theorem 2.1] to obtain the error estimate of \(W^{1,p}\) norm of the finite volume method for elliptic problem.

Lemma 7.1

Let \(u_h \in X_h\), set \(v_h = G_h u_h\), \(\hat{v}_h = M_h^{-1}v_h\). Let \(V = Gu_h\), be the solution of

$$\begin{aligned} -\Delta V + V = u_h \text { in } \Omega , \quad \partial _\nu V = 0 \text { on } \Gamma . \end{aligned}$$
(7.4)

Then, we have

$$\begin{aligned} \Vert \hat{v}_h - V\Vert _{1,p} \le Ch\Vert V\Vert _{2,p}. \end{aligned}$$
(7.5)

Proof

We define a bilinear form \(a^*(\cdot ,\cdot )\): for all \(w \in H^1(\Omega )\), \(\chi _h \in X_h\),

$$\begin{aligned} a^*(w,\chi _h) := -\sum _{K \in \mathscr {T}} \chi _K \left( -\int _{\partial K} \nabla w \cdot \nu ~ds\right) + (w,\chi _h), \end{aligned}$$
(7.6)

where \(\nu \) is the unit outer normal vector to \(\partial K\). For any \(\chi _h \in X_h\), multiplying (7.4) with \(\chi _h\) yields

$$\begin{aligned}&\sum _{K \in \mathscr {T}} \chi _K \int _K -\Delta V~dx + (V,\chi _h) = (u_h, \chi _h)\nonumber \\&\quad = -\sum _{K \in \mathscr {T}} \chi _K (\int _{\partial K} \nabla V \cdot \nu ~ds) + (V,\chi _h)\nonumber \\&\quad = a^*(V,\chi _h). \end{aligned}$$
(7.7)

Let \(\hat{V}_h\) be the solution of the equation: find \(\hat{V}_h \in \hat{X}_h\) such that

$$\begin{aligned} a^*(\hat{V}_h,\chi _h) = (u_h,\chi _h), \quad \forall \chi _h \in X_h. \end{aligned}$$
(7.8)

From (7.7) and (7.8), we have

$$\begin{aligned} a^*(V-\hat{V}_h,\chi _h) = 0, \quad \forall \chi _h \in X_h. \end{aligned}$$
(7.9)

On the other hand, V also satisfies,

$$\begin{aligned} a(V,\chi ) = (u_h,\chi ), \quad \forall \chi \in H^1(\Omega ), \end{aligned}$$
(7.10)

where

$$\begin{aligned} a(\phi ,\varphi ) := (\nabla \phi , \nabla \varphi ) + (\phi , \varphi ), \quad \forall \phi ,\varphi \in H^1(\Omega ). \end{aligned}$$
(7.11)

We shall prove the following inequality: for any \(\hat{\chi }_h \in \hat{X}_h\),

$$\begin{aligned}&|a(V-\hat{V}_h, \hat{\chi }_h ) - a^*(V-\hat{V}_h, M_h \hat{\chi }_h )| \nonumber \\&\quad \le Ch(\Vert V - \hat{V}_h\Vert _p + \Vert V\Vert _{2,p})\Vert \hat{\chi }_h \Vert _{1,q}. \end{aligned}$$
(7.12)

For any \(\hat{w}_h, \hat{\chi }_h \in \hat{X}_h\), with \(w_h = M_h \hat{w}_h\), \(\chi _h = M_h \hat{\chi }_h \in X_h\), we have:

$$\begin{aligned}&(\nabla \hat{w}_h, \nabla \hat{\chi }_h )= A_h(w_h,\chi _h) \quad (\text {by (3.22)}) \nonumber \\&\quad = \sum _{K \in \mathscr {T}} \chi _K \sum _{L \in \mathscr {N}_K} \tau _{K,L} (w_K - w_L) = -\sum _{K \in \mathscr {T}} \chi _K \int _{\partial K} \nabla \hat{w}_h \cdot \nu ~ds, \end{aligned}$$
(7.13)

Applying (7.13), we obtain:

$$\begin{aligned}&a(V-\hat{V}_h, \hat{\chi }_h ) - a^*(V-\hat{V}_h, M_h \hat{\chi }_h ) \nonumber \\&\quad = (V-\hat{V}_h,\hat{\chi }_h - M_h \hat{\chi }_h ) + (\nabla V,\nabla \hat{\chi }_h ) + \sum _{K \in \mathscr {T}} \chi _K \int _{\partial K} \nabla V \cdot \nu ~ds. \nonumber \\&\quad = (V-\hat{V}_h, \hat{\chi }_h - M_h \hat{\chi }_h ) + (-\Delta V, \hat{\chi }_h ) + (\Delta V, M_h \hat{\chi }_h). \end{aligned}$$
(7.14)

Since \(\Vert \hat{\chi }_h - M_h \hat{\chi }_h \Vert _q \le Ch \Vert \hat{\chi }_h \Vert _{1,q}\), we conclude (7.12). Furthermore, in view of (7.9), we have

$$\begin{aligned} |a(V-\hat{V}_h, \hat{\chi }_h )|= & {} | a(V-\hat{V}_h, \hat{\chi }_h )- a^*(V-\hat{V}_h, M_h \hat{\chi }_h )| \nonumber \\\le & {} Ch(\Vert V - \hat{V}_h\Vert _p + \Vert V\Vert _{2,p})\Vert \hat{\chi }_h \Vert _{1,q}, \end{aligned}$$
(7.15)

which implies (cf. [8, The proof of Theorem 2.1]):

$$\begin{aligned} \Vert V - \hat{V}_h\Vert _{1,p} \le C h \Vert V\Vert _{2,p}. \end{aligned}$$
(7.16)

Our goal is to obtain the error estimate of \(\Vert V - \hat{v}_h\Vert _{1,p}\Vert _{1,p}\). By triangle inequality and (7.16), we are left to estimate \(\Vert \hat{V}?h - \hat{v}_h\Vert \). We see that \(\hat{v}_h\) and \(\hat{V}_h\) satisfy the following tow equations respectively:

$$\begin{aligned}&(\nabla \hat{v}_h, \nabla \hat{\chi }_h) + ( M_h \hat{v}_h, \chi _h) = (u_h,\chi _h), \quad \forall \chi _h \in X_h, \end{aligned}$$
(7.17a)
$$\begin{aligned}&(\nabla \hat{V}_h, \nabla \hat{\chi }_h) + (\hat{V}_h, \chi _h) = (u_h,\chi _h), \quad \forall \chi _h \in X_h, \end{aligned}$$
(7.17b)

where \(\hat{\chi }_h = M_h^{-1} \chi _h\). Therefore, we have

(7.18)

which implies (applying Lemma 4.3 with )

$$\begin{aligned} \Vert \hat{V}_h - \hat{v}_h\Vert _{1,p} \le C \Vert \hat{V}_h - M_h \hat{V}_h\Vert _p \le C h \Vert \hat{V}_h\Vert _{1,p} \le Ch \Vert u_h\Vert _p. \end{aligned}$$
(7.19)

By the triangle inequality, (7.16) and (7.19), we conclude the error estimate (7.5). \(\square \)

Remark 7.1

In [8], the authors consider lumping operator \(\bar{M}_h\) (defined by (3.3)) instead of \(M_h\). However, (7.12) and (7.5) hold for both \(M_h\) and \(\bar{M}_h\), since we have only used the properties (3.8) and (3.14), which are satisfied for both \(M_h\) and \(\bar{M}_h\). With the help of (3.12), one can obtain a higher-order error estimate of \(L^p\) norm (cf. [8]), which is not necessary for our case since we need the error estimate in \(W^{1,p}\) norm (see Lemma 4.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Saito, N. Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numer. Math. 135, 265–311 (2017). https://doi.org/10.1007/s00211-016-0793-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0793-2

Mathematics Subject Classification

Navigation