Numerische Mathematik

, Volume 134, Issue 2, pp 389–411

Far-field reflector problem and intersection of paraboloids

Article

Abstract

In this article, we propose a numerical approach to the far field reflector problem which is an inverse problem arising in geometric optics. Caffarelli et al. (Contemp Math 226:13–32, 1999) proposed an algorithm that involves the computation of the intersection of the convex hull of confocal paraboloids. We show that computing this intersection amounts to computing the intersection of a power diagram (a generalization of the Voronoi diagram) with the unit sphere. This allows us to provide an algorithm that computes efficiently the intersection of confocal paraboloids using the exact geometric computation paradigm. Furthermore, using an optimal transport formulation, we cast the far field reflector problem into a concave maximization problem. This allows us to numerically solve the far field reflector problem with up to 15k paraboloids. We also investigate other geometric optic problems that involve union of confocal paraboloids and also intersection and union of confocal ellipsoids. In all these cases, we show that the computation of these surfaces is equivalent to the computation of the intersection of a power diagram with the unit sphere.

Mathematics Subject Classification

68U05 Computer graphics; computational geometry 65K15 Mathematical programming, optimization and variational techniques  52A41 Convex functions and convex programs  35Q99 Equations of mathematical physics and other areas of application

References

1. 1.
Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16, 78–96 (1987)
2. 2.
Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20(1), 61–76 (1998)
3. 3.
Bertsekas, D.P., Eckstein, J.: Dual coordinate step methods for linear network flow problems. Math. Program. 42(1), 203–243 (1988)
4. 4.
Boissonnat, J.-D., Karavelas, M.I.: On the combinatorial complexity of Euclidean Voronoi cells and convex hulls of d-dimensional spheres. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA), SODA ’03. Society for Industrial and Applied Mathematics, pp. 305–312 (2003)Google Scholar
5. 5.
Brónnimann, H., Burnikel, C., Pion, S.: Interval arithmetic yields efficient dynamic filters for computational geometry. Discret. Appl. Math. 109, 25–47 (2001)
6. 6.
Caffarelli, L.A., Gutiérrez, C.E., Huang, Q.: On the regularity of reflector antennas. Ann. Math. Second Ser. 167(1), 299 (2008)
7. 7.
Caffarelli, L.A., Kochengin, S., Oliker, V.I.: On the numerical solution of the problem of reflector design with given far-field scattering data. Contemp. Math. 226, 13–32 (1999)
8. 8.
Caffarelli, L.A., Oliker, V.I.: Weak solutions of one inverse problem in geometric optics. J. Math. Sci. 154(1), 39–49 (2008)
9. 9.
Cgal, Computational Geometry Algorithms Library. http://www.cgal.org
10. 10.
Delage, C.: CGAL-based first prototype implementation of Möbius diagram in 2D. Technical Report ECG-TR-241208-01, INRIA Sophia-Antipolis, 2003Google Scholar
11. 11.
Glimm, T., Oliker, V.: Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem. J. Math. Sci. 117(3), 4096–4108 (2003)
12. 12.
Guan, P., Wang, X.-J.: On a Monge–Ampere equation arising in geometric optics. J. Differ. Geom. 48(2), 205–223 (1998)
13. 13.
Kettner, L., Mehlhorn, K., Schirra, S., Yap, C.K.: Classroom examples of robustness problems in geometric computations. Comput. Geom. Theory Appl. 40, 61–79 (2008)
14. 14.
Kitagawa, J.: An iterative scheme for solving the optimal transportation problem (2012) (preprint). arXiv:1208.5172
15. 15.
Kochengin, S.A., Oliker, V.I.: Determination of reflector surfaces from near-field scattering data. Inverse Probl. 13(2), 363 (1997)
16. 16.
Mérigot, Q.: A multiscale approach to optimal transport. In: Computer Graphics Forum, vol. 30, pp. 1583–1592. Wiley Online Library, New York (2011)Google Scholar
17. 17.
Mulmuley, K. (ed.): Computational geometry—an introduction through randomized algorithms. Prentice Hall, Englewood Cliffs (1994)
18. 18.
Oliker, V.I.: Mathematical aspects of design of beam shaping surfaces in geometrical optics. In: Trends in Nonlinear Analysis, pp. 193–224 (2003)Google Scholar
19. 19.
Oliker, V.I.: A rigorous method for synthesis of offset shaped reflector antennas. Comput. Lett. 2(1–2), 1–2 (2006)Google Scholar
20. 20.
Oliker, V.I.: A characterization of revolution quadrics by a system of partial differential equations. Proc. Am. Math. Soc. 138(11), 4075–4080 (2010)
21. 21.
Sack, J.-R., Urrutia, J. (eds.): Handbook of Computational Geometry. North-Holland Publishing Co., Amsterdam (2000)
22. 22.
Wang, X.J.: On the design of a reflector antenna ii. Calc. Var. Partial Differ. Equ. 20(3), 329–341 (2004)
23. 23.
Wang, X.-J.: On the design of a reflector antenna. Inverse Probl. 12(3), 351 (1996)

Authors and Affiliations

• Pedro Machado Manhães de Castro
• 1
• Quentin Mérigot
• 2
• 3
• Boris Thibert
• 2
• 3
Email author
1. 1.Centro de InformáticaUniversidade Federal de PernambucoRecifeBrazil
2. 2.Université Grenoble Alpes, LJKGrenobleFrance
3. 3.CNRS, LJKGrenobleFrance

Personalised recommendations

Citearticle 