Advertisement

Numerische Mathematik

, Volume 134, Issue 2, pp 343–388 | Cite as

Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs

  • F. Nobile
  • L. TamelliniEmail author
  • R. Tempone
Article

Abstract

In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw–Curtis) or non-nested (Gauss–Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature.

Mathematics Subject Classification

41A10 65C20 65N12 65N30 

References

  1. 1.
    Babenko, K.I.: Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Soviet Math. Dokl. 1, 672–675 (1960)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bäck, J., Nobile, F., Tamellini, L., Tempone, R.: Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Hesthaven, J.S., Ronquist, E.M. (eds.) Spectral and High Order Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 76, pp. 43–62. Springer, Berlin (2011) (selected papers from the ICOSAHOM ’09 conference, June 22–26, Trondheim, Norway)Google Scholar
  5. 5.
    Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12(4), 273–288 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beck, J., Nobile, F., Tamellini, L., Tempone, R.: On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22(09) (2012)Google Scholar
  7. 7.
    Beck, J., Nobile, F., Tamellini, L., Tempone, R.: A quasi-optimal sparse grids procedure for groundwater flows. In: Azaiez, M., El Fekih, H., Hesthaven, J.S. (eds.) Spectral and High Order Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering. Springer, Berlin (2012) (selected papers from the ICOSAHOM ’12 conference)Google Scholar
  8. 8.
    Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67(4), 732–751 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31(6), 4281–4304 (2009/2010)Google Scholar
  10. 10.
    Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chkifa, A.: On the lebesgue constant of leja sequences for the complex unit disk and of their real projection. J. Approx. Theory 166, 176–200 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chkifa, A., Cohen, A., Devore, R., Schwab, C.: Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM Math. Model. Numer. Anal. 47(1), 253–280 (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Chkifa, A., Cohen, A., Schwab, C.: High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Foundations of Computational Mathematics, pp. 1–33 (2013)Google Scholar
  14. 14.
    Cohen, A., Devore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’S. Anal. Appl. (Singap.) 9(1), 11–47 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002)Google Scholar
  16. 16.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer, Berlin (1993)Google Scholar
  17. 17.
    Dzjadik, V.K., Ivanov, V.V.: On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points. Anal. Math. 9(2), 85–97 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ehlich, H., Zeller, K.: Auswertung der Normen von Interpolationsoperatoren. Math. Ann. 164, 105–112 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  21. 21.
    Griebel, M., Knapek, S.: Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78(268), 2223–2257 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gui, W., Babuka, I.: The h, p and h-p versions of the finite element method in 1 dimension—part I. The error analysis of the p-version. Numer. Math. 49(6), 577–612 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Haji-Ali, A.-L., Nobile, F., Tamellini, L., Tempone, R.: Multi-index stochastic collocation for random PDEs.arXiv:1508.07467 (2015, e-print)
  24. 24.
    Haji-Ali, A.-L., Nobile, F., Tempone, R.: Multi-Index Monte Carlo: when sparsity meets sampling. Numer. Math., 1–40 (2015)Google Scholar
  25. 25.
    Harbrecht, H., Peters, M., Siebenmorgen, M.: On multilevel quadrature for elliptic stochastic partial differential equations. In: Sparse Grids and Applications, Lecture Notes in Computational Science and Engineering, vol. 88, pp. 161–179. Springer, Berlin (2013)Google Scholar
  26. 26.
    Klimke, A.: Uncertainty modeling using fuzzy arithmetic and sparse grids. PhD thesis, Universität Stuttgart, Shaker Verlag, Aachen (2006)Google Scholar
  27. 27.
    Le Maître, O.P., Knio, O.M.: Spectral methods for uncertainty quantification. Scientific Computation. Springer, New York (2010) (with applications to computational fluid dynamics)Google Scholar
  28. 28.
    Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Lectures in Advanced Mathematics. European Mathematical Society, Zurich (2008)CrossRefzbMATHGoogle Scholar
  29. 29.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1990)Google Scholar
  30. 30.
    Nobile, F., Tamellini, L., Tempone, R.: Comparison of Clenshaw–Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs. In: Spectral and High Order Methods for Partial Differential Equations—ICOSAHOM ’14, Lecture Notes in Computational Science and Engineering, vol. 106. Springer, Berlin (2015, to appear) (also available as MATHICSE report 41/2014)Google Scholar
  31. 31.
    Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)Google Scholar
  33. 33.
    Patterson, T.N.L.: The optimum addition of points to quadrature formulae. Math. Comput. 22, 847–856 (1968) [addendum, Math. Comput. 22(104), C1–C11 (1968)]Google Scholar
  34. 34.
    Schillings, C., Schwab, C.: Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Probl. 29(6) (2013)Google Scholar
  35. 35.
    Shen, Jie, Wang, Li-Lian: Sparse spectral approximations of high-dimensional problems based on hyperbolic cross. SIAM J. Numer. Anal. 48(3), 1087–1109 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tamellini, L.: Polynomial approximation of PDEs with stochastic coefficients. PhD thesis, Politecnico di Milano (2012)Google Scholar
  37. 37.
    Tamellini, L., Nobile, F.: Sparse Grids Matlab kit v. 15-8. http://csqi.epfl.ch (2011–2015)
  38. 38.
    Teckentrup, A.L., Jantsch, P., Webster, C.G., Gunzburger, M.: A multilevel stochastic collocation method for partial differential equations with random input data. arXiv:1404.2647 (2014, e-print)
  39. 39.
    Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67–87 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Trefethen, L.N.: Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics (2013)Google Scholar
  41. 41.
    van Wyk, H.W.: Multilevel sparse grid methods for elliptic partial differential equations with random coefficients. arXiv:1404.0963 (2014, e-print)
  42. 42.
    Wasilkowski, G.W., Wozniakowski, H.: Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complex. 11(1), 1–56 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CSQI-MATHICSE, École Polytechnique Fédérale LausanneLausanneSwitzerland
  2. 2.Dipartimento di MatematicaUniversità di PaviaPaviaItaly
  3. 3.Applied Mathematics and Computational Science, 4700King Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations