Advertisement

Numerische Mathematik

, Volume 133, Issue 4, pp 781–817 | Cite as

A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem

  • Verónica Anaya
  • David Mora
  • Ricardo Oyarzúa
  • Ricardo Ruiz-BaierEmail author
Article

Abstract

This paper deals with the analysis of new mixed finite element methods for the Brinkman equations formulated in terms of velocity, vorticity and pressure. Employing the Babuška–Brezzi theory, it is proved that the resulting continuous and discrete variational formulations are well-posed. In particular, we show that Raviart–Thomas elements of order \(k \ge 0\) for the approximation of the velocity field, piecewise continuous polynomials of degree \(k+1\) for the vorticity, and piecewise polynomials of degree k for the pressure, yield unique solvability of the discrete problem. On the other hand, we also show that families of finite elements based on Brezzi–Douglas–Marini elements of order \(k+1\) for the approximation of velocity, piecewise continuous polynomials of degree \(k+2\) for the vorticity, and piecewise polynomials of degree k for the pressure ensure the well-posedness of the associated Galerkin scheme. We note that these families provide exactly divergence-free approximations of the velocity field. We establish a priori error estimates in the natural norms with constants independent of the viscosity and we carry out the reliability and efficiency analysis of a residual-based a posteriori error estimator. Finally, we report several numerical experiments illustrating the behaviour of the proposed schemes and confirming our theoretical results on unstructured meshes. Additional examples of cases not covered by our theory are also presented.

Mathematics Subject Classification

65N30 65N12 76D07 65N15 

Notes

Acknowledgments

Stimulating discussions with Prof. Gabriel N. Gatica are gratefully acknowledged. In addition, V. Anaya was partially supported by CONICYT-Chile through FONDECYT postdoctorado No. 3120197, by project Inserción de Capital Humano Avanzado en la Academia No. 79112012, and DIUBB through Project 120808 GI/EF. D. Mora was partially supported by CONICYT-Chile through FONDECYT Project No. 1140791, by DIUBB through Project 120808 GI/EF, and Anillo ANANUM, ACT1118, CONICYT (Chile). R. Oyarzúa was partially supported by CONICYT-Chile through FONDECYT Project No. 1121347, by DIUBB through Project 120808 GI/EF, and Anillo ANANUM, ACT1118, CONICYT (Chile). R. Ruiz-Baier acknowledges support by the Swiss National Science Foundation through the Grant SNSF PP00P2-144922. This work was advanced during a visit of V. Anaya and D. Mora to the Institut des Sciences de la Terre, University of Lausanne.

References

  1. 1.
    Ainsworth, M., Oden, J.: A posteriori error estimation in finite element analysis. In: Pure and Applied Mathematics. Wiley, New York (2000)Google Scholar
  2. 2.
    Alvarez, M., Gatica, G.N., Ruiz-Baier, R.: Analysis of a vorticity-based fully-mixed formulation for the 3D Brinkman–Darcy problem. CI\(^2\)MA preprint 2014-34. http://www.ci2ma.udec.cl/publicaciones/prepublicaciones
  3. 3.
    Amara, M., Capatina-Papaghiuc, D., Trujillo, D.: Stabilized finite element method for Navier–Stokes equations with physical boundary conditions. Math. Comput. 76(259), 1195–1217 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Amara, M., Chacón Vera, E., Trujillo, D.: Vorticity–velocity–pressure formulation for Stokes problem. Math. Comput. 73(248), 1673–1697 (2004)Google Scholar
  5. 5.
    Amestoy, P.R., Duff, I.S., l’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000)Google Scholar
  6. 6.
    Anaya, V., Mora, D., Gatica, G.N., Ruiz-Baier, R.: An augmented velocity–vorticity–pressure formulation for the Brinkman problem. Int. J. Numer. Methods Fluids (2015). doi: 10.1002/fld.4041
  7. 7.
    Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Stabilized mixed approximation of axisymmetric Brinkman flows. ESAIM. Math. Model. Numer. Anal. 49(3), 855–874 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Anaya, V., Mora, D., Ruiz-Baier, R.: An augmented mixed finite element method for the vorticity–velocity–pressure formulation of the Stokes equations. Comput. Methods Appl. Mech. Eng. 267, 261–274 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Arnold, D.N., Falk, R.S., Gopalakrishnan, J.: Mixed finite element approximation of the vector Laplacian with Dirichlet boundary conditions. Math. Models Methods Appl. Sci. 22(9), 1–26 (2012). (1250024)Google Scholar
  10. 10.
    Babuška, I., Gatica, G.N.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48(2), 498–523 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bercovier, M., Engelman, M.: A finite element for the numerical solution of viscous incompressible flows. J. Comput. Phys. 30, 181–201 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity, and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44(2), 826–850 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bochev, P.V.: Analysis of least-squares finite element methods for the Navier–Stokes equations. SIAM J. Numer. Anal. 34(5), 1817–1844 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bochev, P.V., Gunzburger, M.: Least-squares finite element methods. In: Applied Mathematical Sciences, vol. 166. Springer, New York (2009)Google Scholar
  15. 15.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. In: Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)Google Scholar
  16. 16.
    Bustinza, R., Gatica, G.N., González, M.: A mixed finite element method for the generalized Stokes problem. Int. J. Numer. Methods Fluids 49(8), 877–903 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66(218), 465–476 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chang, C.L.: A mixed finite element method for the Stokes problem: an acceleration–pressure formulation. Appl. Math. Comput. 36(2), 135–146 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chang, C.L., Jiang, B.-N.: An error analysis of least-squares finite element method of velocity–pressure–vorticity formulation for the Stokes problem. Comput. Methods Appl. Mech. Eng. 84(3), 247–255 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Clément, P.: Approximation by finite element functions using local regularisation. RAIRO Modél. Math. Anal. Numér. 9, 77–84 (1975)zbMATHGoogle Scholar
  21. 21.
    Cockburn, B., Cui, J.: An analysis of HDG methods for the vorticity–velocity–pressure formulation of the Stokes problem in three dimensions. Math. Comput. 81(279), 1355–1368 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Duan, H.-Y., Liang, G.-P.: On the velocity–pressure–vorticity least-squares mixed finite element method for the 3D Stokes equations. SIAM J. Numer. Anal. 41(6), 2114–2130 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Dubois, F., Salaün, M., Salmon, S.: First vorticity–velocity–pressure numerical scheme for the Stokes problem. Comput. Methods Appl. Mech. Eng. 192(44–46), 4877–4907 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Frey, P.J., George, P.-L.: Maillages, Applications aux éléments finis. Hermès, Paris (1999)Google Scholar
  25. 25.
    Gatica, G.N.: A simple introduction to the mixed finite element method. Theory and applications. In: Springer Briefs in Mathematics. Springer, New York (2014)Google Scholar
  26. 26.
    Gatica, G.N., Gatica, L.F., Márquez, A.: Augmented mixed finite element methods for a vorticity-based velocity–pressure–stress formulation of the Stokes problem in 2D. Int. J. Numer. Methods Fluids 67(4), 450–477 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gatica, G.N., Gatica, L.F., Márquez, A.: Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126(4), 635–677 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gatica, G.N., Heuer, N., Meddahi, S.: On the numerical analysis of nonlinear twofold saddle point problems. IMA J. Numer. Anal. 23(2), 301–330 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gatica, G.N., Oyarzúa, R., Sayas, F.J.: A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem. Comput. Methods Appl. Mech. Eng. 200(21–22), 1877–1891 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Girault, V.: Incompressible finite element methods for Navier–Stokes equations with non-standard boundary conditions in \(\mathbb{R}^3\). Math. Comput. 51(183), 55–74 (1988)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  32. 32.
    Howell, J.S.: Approximation of generalized Stokes problems using dual-mixed finite elements without enrichment. Int. J. Numer. Methods Fluids 67(2), 247–268 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Karlsen, K.H., Karper, T.K.: Convergence of a mixed method for a semi-stationary compressible Stokes system. Math. Comput. 80, 1459–1498 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pontaza, J.P., Reddy, J.N.: Spectral/hp least-squares finite element formulation for the Navier–Stokes equations. J. Comput. Phys. 190(2), 523–549 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Salaün, M., Salmon, S.: Numerical stabilization of the Stokes problem in vorticity–velocity–pressure formulation. Comput. Methods Appl. Mech. Eng. 196(9–12), 1767–1786 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Salaün, M., Salmon, S.: Low-order finite element method for the well-posed bidimensional Stokes problem. IMA J. Numer. Anal. 35, 427–453 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Speziale, C.G.: On the advantages of the vorticity–velocity formulations of the equations of fluid dynamics. J. Comput. Phys. 73(2), 476–480 (1987)CrossRefzbMATHGoogle Scholar
  38. 38.
    Vassilevski, P.S., Villa, U.: A mixed formulation for the Brinkman problem. SIAM J. Numer. Anal. 52(1), 258–281 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Verfürth, R.: A review of a posteriori error estimation and adaptive-mesh-refinement techniques. Wiley-Teubner, Chichester (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Verónica Anaya
    • 1
  • David Mora
    • 1
    • 2
  • Ricardo Oyarzúa
    • 1
    • 2
  • Ricardo Ruiz-Baier
    • 3
    Email author
  1. 1.GIMNAP, Departamento de Matemática, Facultad de CienciasUniversidad del Bío-BíoConcepciónChile
  2. 2.Centro de Investigación en Ingeniería Matemática (CI²MA)Universidad de ConcepciónConcepciónChile
  3. 3.Institut des Sciences de la TerreUniversity of Lausanne, Géopolis Unil-MoulineLausanneSwitzerland

Personalised recommendations