Skip to main content
Log in

An abstract framework in the numerical solution of boundary value problems for neutral functional differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the numerical solution of boundary value problems for general neutral functional differential equations. The problems are restated in an abstract form and, then, a general discretization of the abstract form is introduced and a convergence analysis of this discretization is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abell, K.A., Elmer, C.E., Humpries, A.R., Van Vleck, E.K.: Computation of mixed type functional differential boundary value problems. SIAM J. Appl. Dyn. Syst. 4(3), 755–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azbelev, N.V., Maksimov, V.K., Rakhmatullina L.F.: Introduction to the theory of functional differential equations: methods and applications. In: Contemporary Mathematics and its Applications, vol 3. Hindawi Publishing Corporation (2007)

  3. Bader, G.: Solving boundary value problems for functional differential equations by collocation. In: Ascher, U.M., Russel, R.D. (eds.) Numerical Boundary Value ODEs, Progress in Scientific Computing, vol. 5, pp. 227–243. Birkhauser, Boston (1985)

  4. Bakke, V.L., Jackiewicz, Z.: The numerical solution of boundary value problems for differential equations with state-dependent delays. Appl. Math. 34, 1–17 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Barton, D.A.W., Krauskopf, B., Wilson, R.E.: Collocation schemes for periodic solutions of neutral delay differential equations. J. Differ. Equ. Appl. 12(11), 1087–1101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellen, A.: The collocation method for the numerical approximation of the periodic solution of functional differential equations. Computing 23, 55–66 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellen, A.: Monotone methods for periodic solutions of second order scalar functional differential equations. Numer. Math. 42, 15–30 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellen, A.: A Runge–Kutta–Nystrom method for delay differential equations. In: Ascher, U.M., Russel, R.D. (eds.) Numerical Boundary Value ODEs, Progress in Scientific Computing, vol. 5, pp. 271–283. Birkhauser, Boston (1985)

  9. Bellen, A., Zennaro, M.: A collocation method for boundary value problems of differential equations with functional arguments. Computing 32, 307–318 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burkowski, F.J., Cowan, D.D.: The numerical derivation of a periodic solution of a second order differential difference equation. SIAM J. Numer. Anal. 10, 489–495 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chi, H., Bell, J., Hassard, B.: Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory. J. Math. Biol. 24, 583–601 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chocholaty, P., Slahor, L.: A numerical method to boundary value problems for second order delay differential equations. Numer. Math. 33, 69–75 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cryer, C. W.: The numerical solution of boundary value problems for second order functional differential equations by finite differences. Numer. Math. 20, 288–299 (1972/73)

  14. De Luca, J., Humphries, T., Rodrigues, S.B.: Finite element boundary value integration of Wheeler–Feynman electrodynamics. J. Comput. Appl. Math. 236, 3319–3337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Engelborghs, K., Luzyanina, T., Hout, K.J.I., Roose, D.: Collocation methods for the computation of periodic solutions of delay differential equations. SIAM J. Sci. Comput. 22(5), 1593–1609 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations. J. Comput. Appl. Math. 125, 265–275 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Engelborghs, K., Doedel, E.J.: Convergence of a boundary value difference equation for computing periodic solutions of neutral delay differential equations. J. Differ. Equ. Appl. 7, 927–940 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Engelborghs, K., Doedel, E.J.: Stability of piecewise polynomial collocation for computing periodic solution of delay differential equations. Numer. Math. 91, 627–648 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ford, N.J., Lumb, P.M.: Mixed-type functional differential equations: a numerical approach. J. Comput. Appl. Math. 229, 471–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ford, N.J., Lumb, P., Lima, P.M., Teodoro, M.F.: The numerical solution of forward-backward differential equations: decomposition and related issues. J. Comput. Appl. Math. 234, 2745–2756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ganesh, M., Spence, A.: Orthogonal collocation for a nonlinear integro-differential equation. IMA J. Numer. Anal. 18, 191–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ganesh, M., Sloan, I.H.: Optimal order spline methods for nonlinear differential and integro-differential equations. Appl. Numer. Math. 29, 445–478 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garey, L.E., Gladwin, C.J.: Numerical methods for second order Volterra integro-differential equations with two point boundary conditions. Util. Math. 35, 103–109 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Garey, L.E., Shaw, R.E.: Solving VIDEs with two-point boundary values and naturally auxiliary conditions. Int. Math. J. 2(5), 433–443 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Hangelbroek, R.J., Kaper, H.G., Leaf, G.K.: Collocation methods for integro-differential equations. SIAM J. Numer. Anal. 14(3), 377–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Henderson, J. (ed.): Boundary Value Problems for Functional-Differential Equations. World Scientific Publishing Co., Inc., River Edge (1995)

    MATH  Google Scholar 

  27. Hu, Q.: Interpolation correction for collocation solutions of Fredholm integro-differential equations. Math. Comput. 67, 987–999 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jankowski, T.: Convergence of multistep methods for retarded functional differential equations with parameters. Appl. Math. 37(1–4), 227–251 (1990)

    MathSciNet  MATH  Google Scholar 

  29. Jankowski, T.: Numerical solution of boundary value problems for retarded functional differential equations with a parameter. Nihonkai Math. J. 6(2), 115–128 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Jankowski, T.: Boundary value problem for systems of functional differential equations. Appl. Math. 47(5), 427–458 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kadalbajoo, M.K., Sharma, K.K.: Numerical analysis of boundary value problems for singularly-perturbed differential-difference equations with small-shifts of mixed type. J. Optim. Theory Appl. 115(1), 145–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kadalbajoo, M.K., Sharma, K.K.: Numerical analysis of singularly perturbed delay differential equations with layer behavior. Appl. Math. Comput. 157, 11–28 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Kadalbajoo, M.K., Sharma, K.K.: Numerical treatment of boundary value problems for second order singularly perturbed delay differential equations. Comput. Appl. Math. 24(2), 151–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kadalbajoo, M.K., Sharma, K.K.: Parameter-uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior. Electron. Trans. Numer. Anal. 23, 180–201 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Kadalbajoo, M.K., Sharma, K.K.: An exponentially fitted finite difference scheme for solving boundary-value problems for singularly-perturbed differential-difference equations: small shifts of mixed type with layer behavior. J. Comput. Anal. Appl. 8, 151–171 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rutitskii, Y.B., Stetsenko, V.Y.: Approximate Solution of Operator Equations. Walters-Noordhoof publishing, Groningen (1972)

    Book  Google Scholar 

  37. Kurihara, M., Suzuki, T.: Chebyshev approximation for a boundary value problem of differential difference equations. Nonlinear Anal. 47, 3839–3847 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, X.: Periodic boundary value problems for differential equations with finite delay. Dyn. Syst. Appl. 3(3), 357–367 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Luzyanina, T., Engelborghs, K., Lust, K., Roose, D.: Computation, continuation and bifurcation analysis of periodic solutions of delay differential equations. Int. J. Bifurc. Chaos 7(11), 2547–2560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Luzyanina, T., Engelborghs, K., Roose, D.: Numerical bifurcation analysis of differential equations with state-dependent delay. Int. J. Bifurc. Chaos 11(3), 737–753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Maset, S.: The collocation method in the numerical solution of BVPs for neutral functional differential equations. Part I: convergence results (in revision)

  42. Maset, S.: The collocation method in the numerical solution of BVPs for neutral functional differential equations. Part II: differential equations with deviating arguments (in revision)

  43. Maset, S.: The collocation method in the numerical solution of BVPs for integro-differential equations (in preparation)

  44. Maset, S.: The Fourier series method in the numerical solution of BVPs for neutral functional differential equations (in preparation)

  45. Mohsen, A., El-Gamel, M.: A sinc-collocation method for linear Fredholm integro-differential equations. Zeitschrift für Angewandte Mathematik und Physik 58(3), 380–390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Parts, I., Pedars, A., Tamme, E.: Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 43(5), 1897–1911 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pedars, A., Tamme, E.: Spline collocation method for integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 197(1), 253–269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pedars, A., Tamme, E.: Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 213(1), 111–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. de Nevers, K., Schmitt, K.: An application of shooting method to boundary value problem for second order delay equations. J. Math. Anal. Appl. 36, 588–597 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  50. Reddien, G.W., Travis, C.C.: Approximation methods for boundary value problems of differential equations with functional arguments. J. Math. Anal. Appl. 46, 62–74 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sakai, M.: Numerical solution of boundary value problems for second order functional differential equations by the use of cubic splines. Mem. Fac. Sci. Kyushu Univ. Ser. A 29(1), 113–122 (1975)

    MathSciNet  MATH  Google Scholar 

  52. Shinohara, Y., Fujimori, H., Suzuki, T., Kurihara, M.: On a boundary value problem for delay differential equations of population dynamics and Chebyshev approximations. J. Comput. Appl. Math. 201, 348–355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Teodoro, F., Lima, P.M., Ford, N.J., Lumb, P.: New approach to the numerical solution of forward–backward equations. Front. Math. China 4, 155–168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Verheyden, K., Lust, K.: A Newton-Picard collocation method for periodic solution of delay differential equations. BIT Numer. Math. 45, 605–625 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Volk, W.: The numerical solution of linear integro-differential equations by projection methods. J. Integral Equ. 9(1), 171–190 (1985)

    MathSciNet  MATH  Google Scholar 

  56. Volk, W.: The iterated Galerkin method for linear integro-differential equations. J. Comput. Appl. Math. 21(1), 63–74 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Maset.

Appendix

Appendix

Lemma 1

Let Y be a Banach space with norm \(\left\| \ \cdot \ \right\| _{Y}\), let \(A:\Omega \subseteq Y\rightarrow Y\), where \(\Omega \) is open, be a Fréchet-differentiable operator and let \(y^{*}\in \Omega \) such that \(DA\left( y^{*}\right) \) is invertible. For any \(r>0\) such that \( \overline{B}\left( y^{*},r\right) \subseteq \Omega \), define

$$\begin{aligned} q\left( r\right) :=\sup _{y\in \overline{B}\left( y^{*},r\right) }\left\| DA\left( y^{*}\right) ^{-1}\left( DA(y) -DA\left( y^{*}\right) \right) \right\| . \end{aligned}$$

Now, let \(r>0\) be such that \(\overline{B}\left( y^{*},r\right) \subseteq \Omega \) . If

$$\begin{aligned} q\left( r\right) <1\quad \text {and}\quad \left\| DA\left( y^{*}\right) ^{-1}Ay^{*} \right\| _{Y}\le \left( 1-q\left( r\right) \right) r, \end{aligned}$$
(71)

then A has a unique zero \(\overline{y}^{*}\) in \(\overline{B}\left( y^{*},r\right) \) and

$$\begin{aligned} \left\| \overline{y}^{*}-y^{*}\right\| _{Y}\le \frac{ \left\| DA\left( y^{*}\right) ^{-1}A y^{*} \right\| _{Y}}{1-q\left( r\right) }. \end{aligned}$$
(72)

Moreover, we have

$$\begin{aligned} \overline{y}^{*}-y^{*}=-DA\left( y^{*}\right) ^{-1}Ay^{*} +\delta , \end{aligned}$$
(73)

where

$$\begin{aligned} \left\| \delta \right\| _{Y}\le \frac{q\left( r\right) \left\| DA\left( y^{*}\right) ^{-1}Ay^{*} \right\| _{Y}}{ 1-q\left( r\right) }. \end{aligned}$$
(74)

The proof of the first part is more or less similar to the proof of [36, Lemma 19.1, page 293]. The proof of the second part (73) is clear once the proof of first part is understood.

Lemma 2

Let Y be a Banach space with norm \(\left\| \ \cdot \ \right\| _{Y}\). Let \(A,B,C:Y\rightarrow Y\) be linear bounded operators such that \(A=B+C\) and B is invertible. Let \(\left\{ A_{K}\right\} \), \( \left\{ B_{K}\right\} \) and \(\left\{ C_{K}\right\} \) be sequences of linear bounded operators \(Y\rightarrow Y\) such that, for any positive integer K, \(A_{K}=B_{K}+C_{K} \) and \(B_{K}\) is invertible.

If A is invertible,

$$\begin{aligned} \lim _{K\rightarrow \infty }\Vert B_{K}^{-1}\Vert \cdot \Vert \left( B_{K}-B\right) B^{-1}C\Vert =0 \end{aligned}$$
(75)

and

$$\begin{aligned} \lim _{K\rightarrow \infty }\Vert B_{K}^{-1}\Vert \cdot \Vert C_{K}-C\Vert =0, \end{aligned}$$
(76)

then there exists a positive integer \(K_{2}\) such that, for any positive integer \(K\ge K_{2}\), \( A_{K}\) is invertible and

$$\begin{aligned} \Vert A_{K}^{-1}\Vert \le 2\Vert A^{-1}B\Vert \cdot \Vert B_{K}^{-1}\Vert . \end{aligned}$$

Proof

Assume that A is invertible and (75) and (76) hold. For any positive integer K, we have

$$\begin{aligned} A_{K}=B_{K}+C_{K}=B_{K}\left( I_{Y}+B_{K}^{-1}C_{K}\right) \end{aligned}$$

and then \(A_{K}\) is invertible if \(I_{Y}+B_{K}^{-1}C_{K}\) is invertible. In this case, we have

$$\begin{aligned} A_{K}^{-1}=\left( I_{Y}+B_{K}^{-1}C_{K}\right) ^{-1}B_{K}^{-1}. \end{aligned}$$

Now, since

$$\begin{aligned} I_{Y}+B_{K}^{-1}C_{K}= & {} I_{Y}+B^{-1}C+B_{K}^{-1}C_{K}-B^{-1}C \\= & {} I_{Y}+B^{-1}C+B_{K}^{-1}\left( C_{K}-C\right) +\left( B_{K}^{-1}-B^{-1}\right) C \\= & {} I_{Y}+B^{-1}C+B_{K}^{-1}\left( C_{K}-C\right) -B_{K}^{-1}\left( B_{K}-B\right) B^{-1}C \end{aligned}$$

and

$$\begin{aligned} I_{Y}+B^{-1}C=B^{-1}\left( B+C\right) =B^{-1}A \end{aligned}$$

is invertible with inverse

$$\begin{aligned} \left( I_{Y}+B^{-1}C\right) ^{-1}=A^{-1}B, \end{aligned}$$

the thesis follows by the Banach perturbation Lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maset, S. An abstract framework in the numerical solution of boundary value problems for neutral functional differential equations. Numer. Math. 133, 525–555 (2016). https://doi.org/10.1007/s00211-015-0754-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0754-1

Mathematics Subject Classification

Navigation