Numerische Mathematik

, Volume 133, Issue 1, pp 37–66 | Cite as

A natural nonconforming FEM for the Bingham flow problem is quasi-optimal

Article

Abstract

This paper introduces a novel three-field formulation for the Bingham flow problem and its two-dimensional version named after Mosolov together with low-order discretizations: a nonconforming for the classical formulation and a mixed finite element method for the three-field model. The two discretizations are equivalent and quasi-optimal in the sense that the \(H^1\) error of the primal variable is bounded by the error of the \(L^2\) best-approximation of the stress variable. This improves the predicted convergence rate by a log factor of the maximal mesh-size in comparison to the first-order conforming finite element method in a model scenario. Despite that numerical experiments lead to comparable results, the nonconforming scheme is proven to be quasi-optimal while this is not guaranteed for the conforming one.

Mathematics Subject Classification

65N30 76M10 

References

  1. 1.
    Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brézis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis. Academic Press, New York (1971)Google Scholar
  3. 3.
    Carstensen, C., Gallistl, D., Schedensack, M.: Adaptive nonconforming Crouzeix–Raviart FEM for eigenvalue problems. Math. Comput. 84(293), 1061–1087 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comput. 83(290), 2605–2629 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Carstensen, C., Köhler, K., Peterseim, D., Schedensack, M.: Comparison results for the Stokes equations. Appl. Numer. Math. (2014). doi:10.1016/j.apnum.2013.12.005
  6. 6.
    Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50(6), 2803–2823 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Carstensen, C., Schedensack, M.: Medius analysis and comparison results for first-order finite element methods in linear elasticity. IMA J. Numer. Anal. (2014). doi:10.1093/imanum/dru048
  8. 8.
    Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Autom. Inf. Recherche Opér. Sér. Rouge 7(R-3), 33–75 (1973)Google Scholar
  9. 9.
    Duvaut, G., Lions, J.L., Trémolières, R.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)CrossRefMATHGoogle Scholar
  10. 10.
    Evans, L.C.: Graduate Studies in Mathematics. Partial differential equations, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)Google Scholar
  11. 11.
    Falk, R., Mercier, B.: Error estimates for elasto-plastic problems. RAIRO Anal. Numér. 11(R–2), 135–144 (1977)MathSciNetMATHGoogle Scholar
  12. 12.
    Fuchs, M., Seregin, G.: Variational methods for problems from plasticity theory and for generalized Newtonian fluids. In: Lecture Notes in Mathematics, vol. 1749. Springer, Berlin (2000)Google Scholar
  13. 13.
    Glowinski, R.: Sur l’approximation d’une inéquation variationnelle elliptique de type Bingham. RAIRO Anal. Numér. 10(R–3), 13–30 (1976)MathSciNetGoogle Scholar
  14. 14.
    Glowinski, R.: Scientific Computation. Numerical methods for nonlinear variational problems. Springer, Berlin (2008). (reprint of the 1984 original)Google Scholar
  15. 15.
    Glowinski, R., Lions, J.L., Trémolières, R.: Analyse numérique des inéquations variationnelles. Tome 1. Théorie générale premiéres applications. In: Méthodes Mathématiques de l’Informatique, vol. 5. Dunod, Paris (1976)Google Scholar
  16. 16.
    Mosolov, P.P., Miasnikov, V.P.: Variational methods in the theory of the fluidity of a viscous-plastic medium. J. Appl. Math. Mech. 29(3), 545–577 (1965)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mosolov, P.P., Miasnikov, V.P.: On stagnant flow regions of a viscous-plastic medium in pipes. J. Appl. Math. Mech. 30(4), 841–854 (1966)CrossRefMATHGoogle Scholar
  18. 18.
    Mosolov, P.P., Miasnikov, V.P.: On qualitative singularities of the flow of a viscoplastic medium in pipes. J. Appl. Math. Mech. 31(3), 609–613 (1967)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. In: Advances in Numerical Mathematics. Wiley, Chichester (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Computational Science and EngineeringYonsei UniversitySeoulKorea
  3. 3.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa
  4. 4.Institut für Numerische SimulationUniversität BonnBonnGermany

Personalised recommendations