Numerische Mathematik

, Volume 132, Issue 4, pp 691–720 | Cite as

Error estimates for optimal control problems of a class of quasilinear equations arising in variable viscosity fluid flow

Article

Abstract

We consider optimal control problems of quasilinear elliptic equations with gradient coefficients arising in variable viscosity fluid flow. The state equation is monotone and the controls are of distributed type. We prove that the control-to-state operator is twice Fréchet differentiable for this class of equations. A finite element approximation is studied and an estimate of optimal order h is obtained for the control. The result makes use of the distributed structure of the controls, together with a regularity estimate for elliptic equations with Hölder coefficients and a second order sufficient optimality condition. The paper ends with a numerical experiment, where the approximation order is computationally tested.

Mathematics Subject Classification

65N30 49K20 35J62 76A05 

References

  1. 1.
    Adams, R.: Sobolev Spaces. Academic Press, New York (1975)MATHGoogle Scholar
  2. 2.
    Ancey, C.: Solving the couette inverse problem using a wavelet-vaguelette decomposition. J. Rheol. 49, 441 (2005)CrossRefGoogle Scholar
  3. 3.
    Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bercovier, M., Engelman, M.: A finite-element method for incompressible non-newtonian flows. J. Comput. Phys. 36, 313–326 (1980)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Casas, E., Dhamo, V.: Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations. Comput. Optim. Appl. 52, 719–756 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Casas, E., Fernández, L.A.: Optimal control of quasilinear elliptic equations with nondifferentiable coefficients at the origin. Rev. Mat. Univ. Complut. Madrid 4, 227–250 (1991)MathSciNetMATHGoogle Scholar
  7. 7.
    Casas, E., Fernández, L.A.: Distributed control of systems governed by a general class of quasilinear elliptic equations. J. Differ. Equ. 104, 20–47 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Casas, E., Tröltzsch, F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31, 695–712 (2002)MathSciNetMATHGoogle Scholar
  9. 9.
    Casas, E., Tröltzsch, F.: Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations. ESAIM Control Optim. Calc. Var. 17, 771–800 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Casas, E., Tröltzsch, F.: A general theorem on error estimates with application to a quasilinear elliptic optimal control problem. Comput. Optim. Appl. 53, 173–206 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations. SIAM J. Control Optim. 46, 952–982 (2007). (electronic)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen, Q., Wang, M., Pan, N., Guo, Z.Y.: Optimization principle for variable viscosity fluid flow and its application to heavy oil flow drag reduction. Energy Fuels 23, 4470–4478 (2009)CrossRefGoogle Scholar
  13. 13.
    Cherednichenko, S., Krumbiegel, K., Rösch, A.: Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Probl. 24, 055003 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chow, S.-S.: Finite element error estimates for nonlinear elliptic equations of monotone type. Numer. Math. 54, 373–393 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATHGoogle Scholar
  16. 16.
    Ciarlet, P.G., Lions, L.L.: Handbook of numerical analysis. In: Part I-Finite Element Methods, vol. II. North-Holland, Amsterdam (1991)Google Scholar
  17. 17.
    Clain, S.: Elliptic operators of divergence type with Hölder coefficients in fractional Sobolev spaces. Rend. Mat. Appl. 7(17), 207–236 (1997)MathSciNetMATHGoogle Scholar
  18. 18.
    De Los Reyes, J.C.: Optimal control of a class of variational inequalities of the second kind. SIAM J. Control Optim. 49, 1629–1658 (2011)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    De los Reyes, J.C.: Numerical PDE-constrained optimization. Springer, Berlin (2015)Google Scholar
  20. 20.
    De Los Reyes, J.C., Meyer, C., Vexler, B.: Finite element error analysis for state-constrained optimal control of the Stokes equations. Control Cybern. 37, 251–284 (2008)MathSciNetMATHGoogle Scholar
  21. 21.
    Giaquinta, M., Giusti, E.: Global \(C^{1,\alpha }\)-regularity for second order quasilinear elliptic equations in divergence form. J. Reine Angew. Math. 351, 55–65 (1984)MathSciNetMATHGoogle Scholar
  22. 22.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer, Berlin (2001) (Reprint of the 1998 edition)Google Scholar
  23. 23.
    Gröger, K.: A \(W^{1, p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283, 679–687 (1989)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ladyzhenskaya, O.A., Uraltseva, N.N.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica Inc, Translation editor: Leon Ehrenpreis. Academic Press, New York (1968)Google Scholar
  26. 26.
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)Google Scholar
  27. 27.
    Merino, P., Tröltzsch, F., Vexler, B.: Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space. M2AN. Math. Model. Numer. Anal. 44, 167–188 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern. 37, 51–83 (2008)MathSciNetMATHGoogle Scholar
  29. 29.
    Rao, M.: Rheology of Fluid and Semisolid Foods: Principles and Applications. Springer, Berlin (2007)CrossRefGoogle Scholar
  30. 30.
    Raviart, P.-A., Thomas, J.M.: Introduction à l’analyse numérique des équations aux dérivées partielles. In: Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983)Google Scholar
  31. 31.
    Scott, R.L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Troianiello, G.M.: Elliptic differential equations and obstacle problems. In: The University Series in Mathematics. Plenum Press, New York (1987)Google Scholar
  33. 33.
    Yeow, Y.L., Ko, W.C., Tang, P.P.P.: Solving the inverse problem of couette viscometry by tikhonov regularization. J. Rheol. 44, 1335 (2000)CrossRefGoogle Scholar
  34. 34.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. I. Springer, New York (1986) (Fixed-point theorems. Translated from the German by Peter R, Wadsack)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Research Center on Mathematical Modelling (MODEMAT)Escuela Politécnica Nacional de QuitoQuitoEcuador
  2. 2.BerlinGermany

Personalised recommendations