Advertisement

Numerische Mathematik

, Volume 131, Issue 4, pp 615–642 | Cite as

\(\mathcal {H}\)-matrix approximability of the inverses of FEM matrices

  • Markus Faustmann
  • Jens Markus Melenk
  • Dirk Praetorius
Article

Abstract

We study the question of approximability for the inverse of the FEM stiffness matrix for (scalar) second order elliptic boundary value problems by blockwise low rank matrices such as those given by the \(\mathcal {H}\)-matrix format introduced by Hackbusch (Computing 62(2):89–108, 1999). We show that exponential convergence in the local block rank \(r\) can be achieved. We also show that exponentially accurate \(LU\)-decompositions in the \(\mathcal {H}\)-matrix format are possible for the stiffness matrices arising in the FEM. Our analysis avoids any coupling of the block rank \(r\) to the mesh width \(h\). We also cover fairly general boundary conditions of mixed Dirichlet–Neumann–Robin boundary conditions.

Mathematics Subject Classification

65F05 65N30 65F30 65F50 

References

  1. 1.
    Adams, R.A.: Sobolev spaces, Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)Google Scholar
  2. 2.
    Bebendorf, M.: Hierarchical LU decomposition-based preconditioners for BEM. Computing 74(3), 225–247 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bebendorf, M., Hackbusch, W.: Existence of \(\cal {H}\)-matrix approximants to the inverse FE-matrix of elliptic operators with \(L^{\infty }\)-coefficients. Numer. Math. 95(1), 1–28 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bennighof, J.K., Lehoucq, R.B.: An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput. 25(6), 2084–2106 (electronic) (2004). doi: 10.1137/S1064827502400650
  6. 6.
    Börm, S.: Approximation of solution operators of elliptic partial differential equations by \(\cal {H}\)- and \({\cal {H}}^2\)-matrices. Numer. Math. 115(2), 165–193 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Börm, S.: Efficient Numerical Methods for Non-local Operators, EMS Tracts in Mathematics, vol. 14. European Mathematical Society (EMS), Zürich (2010)CrossRefGoogle Scholar
  8. 8.
    Börm, S., Grasedyck, L.: H-Lib—a library for \(\cal {H}\)-and \({\cal {H}}^2\)-matrices. http://www.hlib.org (1999)
  9. 9.
    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15. Springer, New York (2002)CrossRefGoogle Scholar
  10. 10.
    Brenner, S.C.: The condition number of the Schur complement in domain decomposition. Numer. Math. 83(2), 187–203 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chandrasekaran, S., Dewilde, P., Gu, M., Somasunderam, N.: On the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J. Matrix Anal. Appl. 31(5), 2261–2290 (2010). doi: 10.1137/090775932
  12. 12.
    Dahmen, W., Faermann, B., Graham, I.G., Hackbusch, W., Sauter, S.A.: Inverse inequalities on non-quasiuniform meshes and application to the mortar element method. Math. Comput. 73, 1107–1138 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with \(hp\)-adaptive finite elements, vol. 2. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Frontiers: three dimensional elliptic and Maxwell problems with applications. Chapman & Hall/CRC, Boca Raton (2008)Google Scholar
  14. 14.
    Ern, A., Guermond, J.L.: Evaluation of the condition number in linear systems arising in finite element approximations. M2AN Math. Model. Numer. Anal. 40(1), 29–48 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Faustmann, M.: \({\cal {H}}\)-matrix approximantion of inverses of FEM and BEM matrices. doctoral thesis, work in progress, Vienna (2015)Google Scholar
  16. 16.
    Faustmann, M., Melenk, J.M., Praetorius, D.: Existence of \({\cal {H}}\)-matrix approximation to the inverse of BEM matrices: the simple layer operator. Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien, Tech. Rep. in preparation (2013)Google Scholar
  17. 17.
    Faustmann, M., Melenk, J.M., Praetorius, D.: Existence of \({\cal {H}}\)-matrix approximants to the inverses of BEM matrices: the hyper singular integral operator. Work in progress (2014)Google Scholar
  18. 18.
    Giebermann, K.: Multilevel approximation of boundary integral operators. Computing 67(3), 183–207 (2001). doi: 10.1007/s006070170005
  19. 19.
    Gillman, A., Martinsson, P.: A direct solver with \(O(N)\) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method. Tech. rep. (2013). arXiv:1302.5995 [math.NA]
  20. 20.
    Grasedyck, L.: Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis, Kiel (2001) (in German)Google Scholar
  21. 21.
    Grasedyck, L.: Adaptive recompression of \({\cal H}\)-matrices for BEM. Computing 74(3), 205–223 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({\cal H}\)-matrices. Computing 70(4), 295–334 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Grasedyck, L., Hackbusch, W., Kriemann, R.: Performance of \({\cal H}\)-LU preconditioning for sparse matrices. Comput. Methods Appl. Math. 8(4), 336–349 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Grasedyck, L., Kriemann, R., Le Borne, S.: Parallel black box \({\cal H}\)-LU preconditioning for elliptic boundary value problems. Comput. Vis. Sci. 11(4–6), 273–291 (2008). doi: 10.1007/s00791-008-0098-9
  25. 25.
    Grasedyck, L., Kriemann, R., Le Borne, S.: Domain decomposition based \({\cal H}\)-LU preconditioning. Numer. Math. 112(4), 565–600 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Greengard, L., Gueyffier, D., Martinsson, P.G., Rokhlin, V.: Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numer. 18, 243–275 (2009). doi: 10.1017/S0962492906410011
  27. 27.
    Hackbusch, W.: A sparse matrix arithmetic based on \({\cal H}\)-matrices. Introduction to \({\cal H}\)-matrices. Computing 62(2), 89–108 (1999)Google Scholar
  28. 28.
    Hackbusch, W.: Hierarchische Matrizen: Algorithmen und Analysis. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  29. 29.
    Hackbusch, W., Börm, S.: \({\cal H}^2\)-matrix approximation of integral operators by interpolation. Appl. Numer. Math. 43(1–2), 129–143 (2002). doi: 10.1016/S0168-9274(02)00121-6 (19th Dundee Biennial Conference on Numerical Analysis)
  30. 30.
    Hackbusch, W., Khoromskij, B., Sauter, S.A.: On \({\cal H}^2\)-matrices. In: Lectures on applied mathematics (Munich, 1999), pp. 9–29. Springer, Berlin (2000)Google Scholar
  31. 31.
    Ho, K., Ying, L.: Hierarchical interpolative factorization for elliptic operators: differential equations. Tech. rep. (2013). arXiv:1307.2895 [math.NA]
  32. 32.
    Ho, K.L., Greengard, L.: A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34(5), A2507–A2532 (2012). doi: 10.1137/120866683
  33. 33.
    Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  34. 34.
    Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for CFD. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  35. 35.
    Le Borne, S., Grasedyck, L.: \({\cal H}\)-matrix preconditioners in convection-dominated problems. SIAM J. Matrix Anal. Appl. 27(4), 1172–1183 (electronic) (2006). doi: 10.1137/040615845
  36. 36.
    Li, S., Gu, M., Wu, C.J., Xia, J.: New efficient and robust HSS Cholesky factorization of SPD matrices. SIAM J. Matrix Anal. Appl. 33(3), 886–904 (2012). doi: 10.1137/110851110
  37. 37.
    Lintner, M.: The eigenvalue problem for the 2D Laplacian in \({\cal H}\)- matrix arithmetic and application to the heat and wave equation. Computing 72(3–4), 293–323 (2004)zbMATHMathSciNetGoogle Scholar
  38. 38.
    Martinsson, P.G.: A fast direct solver for a class of elliptic partial differential equations. J. Sci. Comput. 38(3), 316–330 (2009). doi: 10.1007/s10915-008-9240-6
  39. 39.
    Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. J. Comput. Phys. 231(4), 1314–1338 (2012). doi: 10.1016/j.jcp.2011.10.013
  40. 40.
    Schwab, C.: \(p\)- and \(hp\)-finite element methods. Theory and applications in solid and fluid mechanics. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998)Google Scholar
  41. 41.
    Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Xia, J.: Efficient structured multifrontal factorization for general large sparse matrices. SIAM J. Sci. Comput. 35(2), A832–A860 (2013). doi: 10.1137/120867032
  43. 43.
    Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31(3), 1382–1411 (2009). doi: 10.1137/09074543X

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Markus Faustmann
    • 1
  • Jens Markus Melenk
    • 1
  • Dirk Praetorius
    • 1
  1. 1.Institute for Analysis and Scientific Computing (Inst. E 101)Vienna University of TechnologyViennaAustria

Personalised recommendations