Numerische Mathematik

, Volume 130, Issue 4, pp 615–643 | Cite as

Error estimates for the discretization of the velocity tracking problem

Article

Abstract

In this paper we are continuing our work (Casas and Chrysafinos, SIAM J Numer Anal 50(5):2281–2306, 2012), concerning a priori error estimates for the velocity tracking of two-dimensional evolutionary Navier–Stokes flows. The controls are of distributed type, and subject to point-wise control constraints. The discretization scheme of the state and adjoint equations is based on a discontinuous time-stepping scheme (in time) combined with conforming finite elements (in space) for the velocity and pressure. Provided that the time and space discretization parameters, \(\tau \) and \(h\) respectively, satisfy \(\tau \le Ch^2\), error estimates of order \(\mathcal {O}(h^2)\) and \(\mathcal {O}(h^{\frac{3}{2}-\frac{2}{p}})\) with \(p > 3\) depending on the regularity of the target and the initial velocity, are proved for the difference between the locally optimal controls and their discrete approximations, when the controls are discretized by the variational discretization approach and by using piecewise-linear functions in space respectively. Both results are based on new duality arguments for the evolutionary Navier–Stokes equations.

Mathematics Subject Classification

65M60 49J20 49K20 65N30 

References

  1. 1.
    Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990)MATHCrossRefGoogle Scholar
  2. 2.
    Apel, T., Flaig, T.: Crank-Nicolson schemes for optimal control problems with evolution equations. SIAM J. Numer. Anal. 50(3), 1484–1512 (2012)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonnans, J.F., Zidani, H.: Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim. 37(6), 1726–1741 (1999)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Casas, E.: An optimal control problem governed by the evolution Navier–Stokes equations. In: Sritharan, S.S. (ed.) Optimal Control of Viscous Flows. Frontiers in Applied Mathematics. SIAM, Philadelphia (1998)Google Scholar
  6. 6.
    Casas, E., Chrysafinos, K.: A discontinuous Galerkin time-stepping scheme for the velocity tracking problem. SIAM J. Numer. Anal. 50(5), 2281–2306 (2012)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Casas, E., Mateos, M.: Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40(5), 1431–1454 (2002)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state navier-stokes equations. SIAM J. Control Optim. 46(3), 952–982 (2007)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Casas, E., Tröltzsch, F.: A general theorem on error estimates with application to elliptic optimal control problems. Comput. Optim. Appl. (2012). doi:10.1007/s10589-011-9453-8
  10. 10.
    Casas, E., Raymond, J.-P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45(5), 1586–1611 (2006)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chrysafinos, K.: Analysis and finite element approximations for distributed optimal control problems for implicit parabolic PDE’s. J. Comput. Appl. Math. 231, 327–348 (2009)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Chrysafinos, K.: Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic pde’s. ESAIM M\(^2\)AN 44(1), 189–206 (2010)Google Scholar
  13. 13.
    Chrysafinos, K., Walkington, N.J.: Discontinuous Galerkin approximations of the Stokes and Navier–Stokes equations. Math. Comput. 79(272), 2135–2167 (2010)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Deckelnick, K., Hinze, M.: Error estimates in space and time for tracking-type control of the instationary Stokes system. Int. Ser. Numer. Math. 143, 87–103 (2002)Google Scholar
  15. 15.
    Deckelnick, K., Hinze, M.: Semidiscretization and error estimates for distributed control of the instationary Navier–Stokes equations. Numer. Math. 97, 297–320 (2004)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. II. Optimal error estimates in \(l_{\infty }(l^2)\) and \(l_{\infty }(l_{\infty })\). SIAM J. Numer. Anal. 32(3), 706–740 (1995)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems IV: nonlinear problems. SIAM J. Numer. Anal. 32(6), 1729–1749 (1995)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Estep, D., Larsson, S.: The discontinuous Galerkin method for semilinear parabolic equations. RAIRO Modél. Math. Anal. Numér. 27, 35–54 (1993)MATHMathSciNetGoogle Scholar
  20. 20.
    Geissert, M., Hess, M., Hieber, M., Schwarz, C., Stavrakidis, K.: Maximal \(L^p\)-\(L^q\)-estimates for the Stokes equation: a short proof of Solonnikov’s theorem. J. Math. Fluid Mech. 12, 47–60 (2010)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Girault, P., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)MATHCrossRefGoogle Scholar
  22. 22.
    Gunzburger, M.D.: Perspectives in Flow Control and Optimization, Advances in Design and Control. SIAM, Philadelphia (2003)Google Scholar
  23. 23.
    Gunzburger, M.D.: Flow Control. Springer, New York (1995)MATHCrossRefGoogle Scholar
  24. 24.
    Gunzburger, M.D., Manservisi, S.: The velocity tracking problem for Navier–Stokes flows with bounded distributed control. SIAM J. Control Optim. 37(6), 1913–1945 (1999)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Gunzburger, M.D., Manservisi, S.: Analysis and approximation of the velocity tracking problem for Navier–Stokes flows with distributed control. SIAM J. Numer. Anal. 37, 1481–1512 (2000)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40(3), 925–946 (2001)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969, English translation)Google Scholar
  29. 29.
    Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969)MATHGoogle Scholar
  30. 30.
    Lions, J.L., Magenes, E.: Problèmes aux Limites non Homogènes. Dunod, Paris (1968)MATHGoogle Scholar
  31. 31.
    Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43, 353–376 (2004)CrossRefGoogle Scholar
  32. 32.
    Meidner, D., Vexler, B.: A priori error estimates for the space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Meidner, D., Vexler, B.: A priori error estimates for the space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Meidner, D., Vexler, B.: A-priori error analysis of the Petrov–Galerkin Crank–Nicolson scheme for parabolic optimal control problems. SIAM J. Control Optim. 49(5), 2183–2211 (2011)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Editeurs Academia, Prague (1967)MATHGoogle Scholar
  36. 36.
    Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120, 345–386 (2012)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Raviart, P.A., Thomas, J.M.: Introduction à L’analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983)MATHGoogle Scholar
  38. 38.
    Rösch, A.: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwendungen 23, 353–376 (2004)MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Rösch, A., Vexler, B.: Optimal control of the Stokes equations: a priori error analysis for finite element discretization with postprocessing. SIAM J. Numer. Anal. 44, 1903–1920 (2006)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Solonnikov, V.A.: Estimates for solutions of nonstationary Navier-Stokes equaions. J. Soviet. Math. 8, 213–317 (1977)Google Scholar
  41. 41.
    Sritharan, S.S.: Optimal Control of Viscous Flow. SIAM, Philadelphia (1998)MATHCrossRefGoogle Scholar
  42. 42.
    Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1979)MATHGoogle Scholar
  43. 43.
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Spinger, Berlin (1997)MATHCrossRefGoogle Scholar
  44. 44.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Philadelphia (2010)Google Scholar
  45. 45.
    Tröltzsch, F., Wachsmuth, D.: Second-order suficcient optimality conditions for the optimal control of Navier–Stokes equations. ESAIM: COCV 12, 93–119 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de TelecomunicaciónUniversidad de CantabriaSantanderSpain
  2. 2.Department of Mathematics, School of Applied Mathematics and Physical SciencesNational Technical University of AthensAthensGreece

Personalised recommendations