Advertisement

Numerische Mathematik

, Volume 130, Issue 4, pp 681–740 | Cite as

Spectral variational integrators

  • James Hall
  • Melvin Leok
Article

Abstract

In this paper, we present a new variational integrator for problems in Lagrangian mechanics. Using techniques from Galerkin variational integrators, we construct a scheme for numerical integration that converges geometrically, and is symplectic and momentum preserving. Furthermore, we prove that under appropriate assumptions, variational integrators constructed using Galerkin techniques will yield numerical methods that are arbitrarily high-order. In particular, if the quadrature formula used is sufficiently accurate, then the resulting Galerkin variational integrator has a rate of convergence at the discrete time-steps that is bounded below by the approximation order of the finite-dimensional function space. In addition, we show that the continuous approximating curve that arises from the Galerkin construction converges on the interior of the time-step at half the convergence rate of the solution at the discrete time-steps. We further prove that certain geometric invariants also converge with high-order, and that the error associated with these geometric invariants is independent of the number of steps taken. We close with several numerical examples that demonstrate the predicted rates of convergence.

Mathematics Subject Classification

37M15 65M70 65P10 70H25 

Notes

Acknowledgments

We are very grateful to the referee of this paper, whose comments and observations significantly improved our exposition. This work was supported in part by NSF Grants CMMI-1029445, DMS-1065972, CMMI-1334759, DMS-1411792, and NSF CAREER Award DMS-1010687.

References

  1. 1.
    Biesiadecki, J.J., Skeel, R.D.: Dangers of multiple time step methods. J. Comput. Phys. 109(2), 318–328 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Blanes, S., Casas, F., Farres, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. (2013)Google Scholar
  3. 3.
    Bloch, A.M., Leok, M. Marsden, J.E., Zenkov, D.V.: Controlled lagrangians and stabilization of the discrete cart-pendulum system. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05, pp. 6579–6584. IEEE (2005)Google Scholar
  4. 4.
    Bou-Rabee, N., Marsden, J.E.: Hamilton-Pontryagin integrators on Lie groups. I. Introduction and structure-preserving properties. Found. Comput. Math. 9(2), 197–219 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bou-Rabee, N., Owhadi, H.: Stochastic variational integrators. IMA J. Numer. Anal. 29(2), 421–443 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bou-Rabee, N., Owhadi, H.: Long-run accuracy of variational integrators in the stochastic context. SIAM J. Numer. Anal. 48(1), 278–297 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications Inc., Mineola (2001)zbMATHGoogle Scholar
  8. 8.
    Calvo, M.P., Sanz-Serna, J.M.: The development of variable-step symplectic integrators, with application to the two-body problem. SIAM J. Sci. Comput. 14(4), 936–952 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Cortés, J., Martínez, S.: Non-holonomic integrators. Nonlinearity 14(5), 1365–1392 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston Inc., Boston (1993)Google Scholar
  11. 11.
    Estep, D., French, D.: Global error control for the continuous Galerkin finite element method for ordinary differential equations. RAIRO Modél. Math. Anal. Numér. 28(7), 815–852 (1994)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Farr, W.M.: Variational integrators for almost-integrable systems. Celestial Mech. Dyn. Astron. 103(2), 105–118 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators for the solar system. Celestial Mechanics and Dynamical Astronomy, pp. 1–34 (2013)Google Scholar
  14. 14.
    Fedorov, Y.N., Zenkov, D.V.: Discrete nonholonomic LL systems on Lie groups. Nonlinearity 18(5), 2211–2241 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Fetecau, R., Marsden, J.E., Ortiz, M., West, M.: Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J. Appl. Dyn. Syst. 2(3), 381–416 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Gladman, B., Duncan, M., Candy, J.: Symplectic integrators for long-term integrations in celestial mechanics. Celestial Mech. Dyn. Astron. 52(3), 221–240 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Springer Series in Computational Mathematics, vol. 31, 2nd edn. Springer, Berlin (2006)Google Scholar
  18. 18.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Solving Ordinary Differential Equations. Springer, Berlin (2008). ISBN 9783540788621Google Scholar
  19. 19.
    Hall, J., Leok, M.: Lie group spectral variational integrators. Found. Comput. Math. (2014) (submitted, arXiv:1402.3327[math.NA])
  20. 20.
    Hulme, B.L.: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comput. 26, 415–426 (1972)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun. ACM 8(1), 40–48 (1965)CrossRefGoogle Scholar
  22. 22.
    Lall, S., West, M.: Discrete variational Hamiltonian mechanics. J. Phys. A 39(19), 5509–5519 (2006)Google Scholar
  23. 23.
    Larsson, S., Thomée, V.: Partial Differential Equations with Numerical Methods, Texts in Applied Mathematics, vol. 45. Springer, Berlin (2003)Google Scholar
  24. 24.
    Laskar, J.: A numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237–238 (1989)CrossRefGoogle Scholar
  25. 25.
    Lee, T., Leok, M., McClamroch, N.H.: Lie group variational integrators for the full body problem. Comput. Methods Appl. Mech. Eng. 196(29–30), 2907–2924 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Lee, T., Leok, M., McClamroch, N.H.: Lagrangian mechanics and variational integrators on two-spheres. Int. J. Numer. Methods Eng. 79(9), 1147–1174 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Lee, T., Leok, M., McClamroch, N.H.: Geometric numerical integration of complex dynamics of tethered spacecraft. In; Proc. American Control Conf., pp. 1885–1891 (2011)Google Scholar
  28. 28.
    Leok, M.: Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods. (preprint, arXiv:math.NA/0508360) (2004)
  29. 29.
    Leok, M., Shingel, T.: Prolongation-collocation variational integrators. IMA J. Numer. Anal. 32(3), 1194–1216 (2012a)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Leok, M., Shingel, T.: General techniques for constructing variational integrators. Front. Math. China 7(2), 273–303 (2012b). (special issue on computational mathematics, invited paper)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Leok, M., Zhang, J.: Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31(4), 1497–1532 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Lew, A., Marsden, J.E., Ortiz, M., West, M.: Asynchronous variational integrators. Arch. Ration. Mech. Anal. 167(2), 85–146 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., Ortiz, M.: Discrete mechanics and optimal control for constrained systems. Optim. Control Appl. Methods 31(6), 505–528 (2010)zbMATHCrossRefGoogle Scholar
  34. 34.
    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts in Applied Mathematics. Springer, New York (1999). ISBN 9780387986432Google Scholar
  35. 35.
    Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199(2), 351–395 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    McLachlan, R., Perlmutter, M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16(4), 283–328 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Müller, S., Ortiz, M.: On the \(\Gamma \)-convergence of discrete dynamics and variational integrators. J. Nonlinear Sci. 14(3), 279–296 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    NASA. JPL Horizons system online solar system data and ephemeris (2012). http://ssd.jpl.nasa.gov/?horizons
  40. 40.
    Patrick, G.W., Cuell, C.: Error analysis of variational integrators of unconstrained Lagrangian systems. Numer. Math. 113(2), 243–264 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Stern, A., Tong, Y., Desbrun, M., Marsden, J.E.: Geometric computational electrodynamics with variational integrators and discrete differential forms. In: Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden, Fields Inst. Commun. Springer, Berlin (2014, to appear)Google Scholar
  42. 42.
    Sussman, G.J., Wisdom, J.: Chaotic evolution of the solar system. Technical report, DTIC Document (1992)Google Scholar
  43. 43.
    Trefethen, L.N.: Spectral Methods in MATLAB, Software, Environments, and Tools, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)CrossRefGoogle Scholar
  44. 44.
    Vankerschaver, J., Liao, C., Leok, M.: Generating functionals and Lagrangian PDEs. J. Math. Phys. 54(8), 082901 (2013). (22 pages)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations