Numerische Mathematik

, Volume 130, Issue 3, pp 567–577 | Cite as

On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers

  • Bingsheng He
  • Xiaoming Yuan


This note proposes a novel approach to derive a worst-case \(O(1/k)\) convergence rate measured by the iteration complexity in a non-ergodic sense for the Douglas–Rachford alternating direction method of multipliers proposed by Glowinski and Marrocco.

Mathematics Subject Classification

90C25 90C30 


  1. 1.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Deng, W., Lai, M. J., Peng, Z. M., Yin, W. T.: Parallel multi-block ADMM with \(o(1/k)\) convergence. 2014 (in press)Google Scholar
  3. 3.
    Eckstein, J., Yao, W.: Augmented Lagrangian and alternating direction methods for convex optimization: a tutorial and some illustrative computational results. RUTCOR Research Report RRR 32–2012 (2012)Google Scholar
  4. 4.
    Fortin, M., Glowinski, R.: Augmented lagrangian methods: applications to the numerical solutions of boundary value problems. Stud. Math. Appl. 15. NorthHolland, Amsterdam (1983)Google Scholar
  5. 5.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)CrossRefzbMATHGoogle Scholar
  6. 6.
    Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In: Fitzgibbon, W., Kuznetsov, Y.A., Neittaanmaki, P., Pironneau, O. (eds.) Modeling, Simulation and Optimization for Science and Technology. Computational Methods in Applied Sciences, vol. 34, pp. 59–82. Springer, Dordrecht (2014)Google Scholar
  7. 7.
    Glowinski, R., Marroco, A.: Approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, vol. 9, R2, pp. 41–76 (1975)Google Scholar
  8. 8.
    Glowinski, R., Le Tallec, P.: Augmented lagrangian and operator-splitting methods in nonlinear mechanics. SIAM Studies in Applied Mathematics, Philadelphia (1989)CrossRefzbMATHGoogle Scholar
  9. 9.
    He, B.S., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23, 151–161 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    He, B.S., Yuan, X.M.: On the O(1/n) convergence rate of Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Nemirovsky, A. S., Yudin, D. B.: Problem complexity and method efficiency in Optimization. Wiley-Interscience Series in Discrete Mathematics, Wiley, New York (1983)Google Scholar
  12. 12.
    Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate \(O(1/k^2)\). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)MathSciNetGoogle Scholar
  13. 13.
    Zhang, X.Q., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematics, International Centre of Management Science and EngineeringNanjing UniversityNanjingChina
  2. 2.Department of MathematicsHong Kong Baptist UniversityHong KongChina

Personalised recommendations