Numerische Mathematik

, Volume 130, Issue 3, pp 467–496 | Cite as

An optimal adaptive FEM for eigenvalue clusters

  • Dietmar Gallistl


The analysis of adaptive finite element methods in practice immediately leads to eigenvalue clusters which requires the simultaneous marking in adaptive finite element methods. A first analysis for multiple eigenvalues of the recent work Dai et al. (arXiv Preprint 1210.1846v2, 2013) introduces an adaptive method whose marking strategy is based on the element-wise sum of local error estimator contributions for multiple eigenvalues. This paper proves the optimality of a practical adaptive algorithm based on a lowest-order conforming finite element method for eigenvalue clusters for the eigenvalues of the Laplace operator in terms of nonlinear approximation classes. All estimates are explicit in the initial mesh-size, the eigenvalues and the cluster width to clarify the dependence of the involved constants.

Mathematics Subject Classification

65M12 65M60 65N25 



The author would like to thank Professor C. Carstensen for valuable discussions. Furthermore, the author would like to thank the anonymous referees for their suggestions which helped to improve the presentation.


  1. 1.
    Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of numerical analysis, vol. II, Handb. Numer. Anal., II, pp. 641–787. North-Holland, Amsterdam (1991)Google Scholar
  2. 2.
    Bank, R.E., Grubišić, L., Ovall, J.S.: A framework for robust eigenvalue and eigenvector error estimation and Ritz value convergence enhancement. Appl. Numer. Math. 66, 1–29 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Braess, D.: Finite elements, 3rd edn. Cambridge University Press, Cambridge (2008)Google Scholar
  6. 6.
    Carstensen, C., Gallistl, D., Schedensack, M.: Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems. Math. Comp. (2014). doi: 10.1090/S0025-5718-2014-02894-9
  7. 7.
    Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems. Numer. Math. 118(3), 401–427 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Carstensen, C., Gedicke, J.: An adaptive finite element eigenvalue solver of quasi-optimal computational complexity. SIAM J. Numer. Anal. 50(3), 1029–1057 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comp. 83(290), 2605–2629 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50(6), 2803–2823 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Cascon, J., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dai, X., He, L., Zhou, A.: Convergence rate and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues (2013, preprint). arXiv:1210.1846v2
  13. 13.
    Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110(3), 313–355 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Durán, R.G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Evans, L.C.: Partial differential equations, graduate studies in mathematics, vol. 19, 2nd edn. American Mathematical Society, providence (2010)CrossRefGoogle Scholar
  16. 16.
    Garau, E.M., Morin, P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31(3), 914–946 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Garau, E.M., Morin, P., Zuppa, C.: Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19(5), 721–747 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Giani, S., Graham, I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Grubišić, L., Ovall, J.S.: On estimators for eigenvalue/eigenvector approximations. Math. Comp. 78(266), 739–770 (2009)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp. 79(272), 2169–2189 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Knyazev, A.V., Osborn, J.E.: New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 43(6), 2647–2667 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Liu, X., Oishi, S.: Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM J. Numer. Anal. 51(3), 1634–1654 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Strang, G., Fix, G.J.: An analysis of the finite element method. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc., Englewood Cliffs (1973)Google Scholar
  27. 27.
    Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Advances in numerical mathematics. Wiley, New York (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut für Numerische SimulationUniversität BonnBonnGermany

Personalised recommendations