Numerische Mathematik

, Volume 130, Issue 2, pp 199–223 | Cite as

Stability of symmetric and nonsymmetric FEM–BEM couplings for nonlinear elasticity problems

  • M. Feischl
  • T. FührerEmail author
  • M. Karkulik
  • D. Praetorius


We consider symmetric as well as non-symmetric coupling formulations of FEM and BEM in the frame of nonlinear elasticity problems. In particular, the Johnson-Nédélec coupling is analyzed. We prove that these coupling formulations are well-posed and allow for unique Galerkin solutions if standard discretizations by piecewise polynomials are employed. Unlike prior works, our analysis does neither rely on an interior Dirichlet boundary to tackle the rigid body motions nor on any assumption on the mesh-size of the discretization used.

Mathematics Subject Classification

65N30 65N15 65N38 



The research of the authors is supported through the FWF research project Adaptive Boundary Element Method, see, funded by the Austrian Science Fund (FWF) under grant P21732, as well as through the Innovative Projects Initiative of Vienna University of Technology. This support is thankfully acknowledged. The authors thank Ernst P. Stephan (University of Hannover) and Heiko Gimperlein (Heriot-Watt University Edinburgh) for fruitful discussions and careful revisions of earlier versions of this manuscript. Moreover, we thank Francisco-Javier Sayas (University of Delaware) for some hint on the simplification of the proof of Theorem 2.


  1. 1.
    Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J.M., Praetorius, D.: Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Comput. Mech. 51(4), 399–419 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Aurada, M., Feischl, M., Praetorius, D.: Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems. ESAIM Math. Model. Numer. Anal. 46(5), 1147–1173 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brezzi, F., Johnson, C.: On the coupling of boundary integral and finite element methods. Calcolo 16(2), 189–201 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bielak, J., MacCamy, R.C.: An exterior interface problem in two-dimensional elastodynamics. Quart. Appl. Math. 41(1):143–159 (1983/84)Google Scholar
  5. 5.
    Brink, U., Stephan, E.P.: Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity. Numer. Methods Partial Differ. Equ. 17(1), 79–92 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Carstensen, C.: Interface problem in holonomic elastoplasticity. Math. Methods Appl. Sci. 16(11), 819–835 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Carstensen, C.: Interface problems in viscoplasticity and plasticity. SIAM J. Math. Anal. 25(6), 1468–1487 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Carstensen, C.: Coupling of FEM and BEM for interface problems in viscoplasticity and plasticity with hardening. SIAM J. Numer. Anal. 33(1), 171–207 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Costabel, M., Ervin, V.J., Stephan, E.P.: Experimental convergence rates for various couplings of boundary and finite elements. Math. Comput. Model. 15(3–5), 93–102 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Carstensen, C., Funken, S.A., Stephan, E.P.: On the adaptive coupling of FEM and BEM in \(2\)-d-elasticity. Numer. Math. 77(2), 187–221 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Costabel, M.: A symmetric method for the coupling of finite elements and boundary elements. The Mathematics of Finite Elements and Applications. VI (Uxbridge, 1987), pp. 281–288. Academic Press, London (1988).Google Scholar
  12. 12.
    Costabel, M., Stephan, E.P.: Coupling of finite elements and boundary elements for inhomogeneous transmission problems in \({ R}^3\). In: The Mathematics of Finite Elements and Applications. VI (Uxbridge, 1987), pp. 289–296. Academic Press, London (1988)Google Scholar
  13. 13.
    Costabel, M., Stephan, E.P.: Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27(5), 1212–1226 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Carstensen, C., Stephan, E.P.: Adaptive coupling of boundary elements and finite elements. RAIRO Modél. Math. Anal. Numér. 29(7), 779–817 (1995)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Carstensen, C., Zarrabi, D., Stephan, E.P.: On the \(h\)-adaptive coupling of FE and BE for viscoplastic and elastoplastic interface problems. J. Comput. Appl. Math. 75(2), 345–363 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gatica, G.N., Hsiao, G.C.: The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem. Z. Anal. Anwendungen 8(4), 377–387 (1989)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Gatica, G.N., Hsiao, G.C.: On a class of variational formulations for some nonlinear interface problems. Rend. Mat. Appl. (7) 10(4), 681–715 (1990)Google Scholar
  18. 18.
    Gatica, G.N., Hsiao, G.C.: On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in \({ R}^2\). Numer. Math. 61(2), 171–214 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Gatica, G.N., Hsiao, G.C.: Boundary-field equation methods for a class of nonlinear problems. In: Pitman Research Notes in Mathematics Series, vol. 331 Longman, Harlow (1995)Google Scholar
  20. 20.
    Gatica, G.N., Hsiao, G.C., Sayas, F.-J.: Relaxing the hypotheses of Bielak-MacCamy’s BEM-FEM coupling. Numer. Math. 120(3), 465–487 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    De Han, H.: A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8(3), 223–232 (1990)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Hsiao, G.C., Wendland, W.L.: Boundary integral equations. In: Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)Google Scholar
  23. 23.
    Johnson, C., Nédélec, J.-C.: On the coupling of boundary integral and finite element methods. Math. Comp. 35(152), 1063–1079 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Alois, K., Oldřich, J., Svatopluk, F.: Function spaces. In: Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Prague (1977)Google Scholar
  25. 25.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  26. 26.
    Of, G., Steinbach, O.: Is the one-equation coupling of finite and boundary element methods always stable? Z. Angew. Math. Mech. 93, 476–484 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Polizzotto, C.: A symmetric-definite BEM formulation for the elastoplastic rate problem (invited contribution). In: Boundary Elements IX, vol. 2 (Stuttgart, 1987), pp. 315–334. Computational Mechanics, Southampton (1987)Google Scholar
  28. 28.
    Sayas, F.-J.: The validity of Johnson-Nédélec’s BEM-FEM coupling on polygonal interfaces. SIAM J. Numer. Anal. 47(5), 3451–3463 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Stephan, E.P.: Coupling of finite elements and boundary elements for some nonlinear interface problems. Comput. Methods Appl. Mech. Eng. 101(1–3), 61–72 (1992)CrossRefzbMATHGoogle Scholar
  30. 30.
    Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  31. 31.
    Steinbach, Olaf: A note on the stable one-equation coupling of finite and boundary elements. SIAM J. Numer. Anal. 49(4), 1521–1531 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Steinbach, O.: On the stability of the non-symmetric BEM/FEM coupling in linear elasticity. Comput. Mech. 51(4), 421–430 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Steinbach, O., Wendland, W.L.: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262(2), 733–748 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Wolfgang, L.: Wendland. On asymptotic error estimates for combined BEM and FEM. In: Finite element and boundary element techniques from mathematical and engineering point of view. CISM Courses and Lectures, vol. 301, pp. 273–333. Springer, Vienna (1988)Google Scholar
  35. 35.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. IV. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  36. 36.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. II/B. Springer, New York (1990)CrossRefGoogle Scholar
  37. 37.
    Zienkiewicz, O.C., Kelly, D.W., Bettess, P.: Marriage à la mode-the best of both worlds (finite elements and boundary integrals). In: Energy Methods in Finite Element Analysis, pp. 81–107. Wiley, Chichester (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Feischl
    • 1
  • T. Führer
    • 1
    Email author
  • M. Karkulik
    • 2
  • D. Praetorius
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations