Numerische Mathematik

, Volume 130, Issue 1, pp 1–34 | Cite as

Wideband nested cross approximation for Helmholtz problems

Article

Abstract

In this article, the construction of nested bases approximations to discretizations of integral operators with oscillatory kernels is presented. The new method has log-linear complexity and generalizes the adaptive cross approximation method to high-frequency problems. It allows for a continuous and numerically stable transition from low to high frequencies.

Mathematics Subject Classification

41A63 65D05 65D15 35J05 

References

  1. 1.
    Alpert, B.K., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Comput. 14, 159–184 (1993)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Amini, S., Profit, A.: Multi-level fast multipole solution of the scattering problem. Eng. Anal. Bound. Elements 27(5), 547–654 (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Anderson, C.R.: An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)CrossRefMATHGoogle Scholar
  4. 4.
    Banjai, L., Hackbusch, W.: Hierarchical matrix techniques for low- and high-frequency Helmholtz problems. IMA J. Numer. Anal. 28(1), 46–79 (2008). doi:10.1093/imanum/drm001 CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Barnes, J., Hut, P.: A hierarchical \(\cal O({N}\log {N})\) force calculation algorithm. Nature 324, 446–449 (1986)CrossRefGoogle Scholar
  6. 6.
    Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bebendorf, M.: Hierarchical matrices: a means to efficiently solve elliptic boundary value problems. In: Lecture Notes in Computational Science and Engineering (LNCSE), vol. 63. Springer, Berlin (2008). ISBN 978-3-540-77146-3Google Scholar
  8. 8.
    Bebendorf, M., Venn, R.: Constructing nested bases approximations from the entries of non-local operators. Numer. Math. 121(4), 609–635 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Börm, S.: \({\cal H}^{2}\)-matrix arithmetics in linear complexity. Computing 77(1), 1–28 (2006)Google Scholar
  10. 10.
    Börm, S., Löhndorf, M., Melenk, J.M.: Approximation of integral operators by variable-order interpolation. Numer. Math. 99(4), 605–643 (2005)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Brakhage, H., Werner, P.: Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Brandt, A.: Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput. Phys. Commun. 65, 24–38 (1991)CrossRefMATHGoogle Scholar
  13. 13.
    Buffa, A., Hiptmair, R.: A coercive combined field integral equation for electromagnetic scattering. SIAM J. Numer. Anal. 42(2), 621–640 (2003)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Burton, A.J., Miller, G.F.: The application of integral equation methods to the numerical solution of boundary value problems. Proc. R. Soc. Lond. A232, 201–210 (1971)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Candès, E., Demanet, L., Ying, L.: A fast butterfly algorithm for the computation of Fourier integral operators. Multiscale Model. Simul. 7(4), 1727–1750 (2009). doi:10.1137/080734339 CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numerica 21, 89–305 (2012)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Cheng, H., Crutchfield, W.Y., Gimbutas, Z., Greengard, L.F., Ethridge, J.F., Huang, J., Rokhlin, V., Yarvin, N., Zhao, J.: A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys. 216(1), 300–325 (2006). doi:10.1016/j.jcp.2005.12.001 CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Darve, E.: The fast multipole method: numerical implementation. J. Comput. Phys. 160(1), 195–240 (2000)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Engquist, B., Ying, L.: Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput. 29(4), 1710–1737 (2007, electronic)Google Scholar
  20. 20.
    Engquist, B., Ying, L.: A fast directional algorithm for high frequency acoustic scattering in two dimensions. Commun. Math. Sci. 7(2), 327–345 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Francia, G.T.D.: Degrees of freedom of an image. J. Opt. Soc. Am. 59(7), 799–803 (1969)CrossRefGoogle Scholar
  22. 22.
    Giebermann, K.: Schnelle Summationsverfahren zur numerischen Lösung von Integralgleichungen für Streuprobleme im \(\mathbb{R}^3\). Ph.D. thesis, Universität Karlsruhe (1997)Google Scholar
  23. 23.
    Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({\cal H}\)-matrices. Computing 70, 295–334 (2003)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge (1988)MATHGoogle Scholar
  25. 25.
    Greengard, L.F., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Greengard, L.F., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica, vol. 6, pp. 229–269. Cambridge University Press, Cambridge (1997)Google Scholar
  27. 27.
    Hackbusch, W.: A sparse matrix arithmetic based on \(\cal H\)-matrices. Part I: introduction to \(\cal H\)-matrices. Computing 62(2), 89–108 (1999)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive \({\cal H}^{2}\)-matrices. Computing 69(1), 1–35 (2002)Google Scholar
  29. 29.
    Hackbusch, W., Khoromskij, B.N.: A sparse \(\cal H\)-matrix arithmetic: general complexity estimates. J. Comput. Appl. Math. 125(1–2), 479–501 (2000). Numerical analysis 2000, vol. VI, Ordinary differential equations and integral equationsGoogle Scholar
  30. 30.
    Hackbusch, W., Khoromskij, B.N.: A sparse \(\cal H\)-matrix arithmetic. Part II: application to multi-dimensional problems. Computing 64(1), 21–47 (2000)MATHMathSciNetGoogle Scholar
  31. 31.
    Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \({\cal H}^{2}\)-matrices. In: Bungartz, H.J., Hoppe, R.H.W., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)Google Scholar
  32. 32.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Messner, M., Schanz, M., Darve, E.: Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation. J. Comput. Phys. 231, 1175–1196 (2012)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Michielssen, E., Boag, A.: A multilevel matrix decomposition for analyzing scattering from large structures. IEEE Trans. Antennas Propag. 44, 1086–1093 (1996)CrossRefGoogle Scholar
  35. 35.
    Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86(2), 414–439 (1990)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Rokhlin, V.: Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl. Comput. Harmon. Anal. 1(1), 82–93 (1993)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Sauer, T., Xu, Y.: On multivariate Lagrange interpolation. Math. Comput. 64(211), 1147–1170 (1995)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1–2), 47–57 (1998). Toeplitz matrices: structures, algorithms and applications (Cortona, 1996)Google Scholar
  40. 40.
    Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute for Numerical SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations