Numerische Mathematik

, Volume 129, Issue 4, pp 647–689 | Cite as

A high frequency boundary element method for scattering by a class of nonconvex obstacles

  • S. N. Chandler-Wilde
  • D. P. Hewett
  • S. Langdon
  • A. Twigger
Article

Abstract

In this paper we propose and analyse a hybrid numerical-asymptotic boundary element method for the solution of problems of high frequency acoustic scattering by a class of sound-soft nonconvex polygons. The approximation space is enriched with carefully chosen oscillatory basis functions; these are selected via a study of the high frequency asymptotic behaviour of the solution. We demonstrate via a rigorous error analysis, supported by numerical examples, that to achieve any desired accuracy it is sufficient for the number of degrees of freedom to grow only in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods. This appears to be the first such numerical analysis result for any problem of scattering by a nonconvex obstacle. Our analysis is based on new frequency-explicit bounds on the normal derivative of the solution on the boundary and on its analytic continuation into the complex plane.

Mathematics Subject Classification

65N38 65R20 78A45 78M15 78M35 

References

  1. 1.
    Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Hewett, D.P., Langdon, S., Melenk, J.M.: A high frequency \(hp\) boundary element method for scattering by convex polygons. SIAM J. Numer. Anal. 51, 629–653 (2013)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Babic̆ V.M., Buldyrev, V.S.: Short-Wavelength Diffraction Theory. Springer, Berlin (1991)Google Scholar
  4. 4.
    Borovikov, V.A., Kinber, B.Y.: Geometrical Theory of Diffraction, IEE Electromagnetic Waves Series, vol. 37. Institution of Electrical Engineers (IEE), London (1994)Google Scholar
  5. 5.
    Bouche, D., Molinet, F., Mittra, R.: Asymptotic Methods in Electromagnetics. Springer, New York (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Keller, J.B.: Geometrical theory of diffraction. J. Opt. Soc. Am. A 52, 116–130 (1962)CrossRefGoogle Scholar
  7. 7.
    Kouyoumjian, R.G., Pathak, P.H.: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. P. IEEE 62(11), 1448–1461 (1974)CrossRefGoogle Scholar
  8. 8.
    Rawlins, A.D.: High-frequency diffraction of a electromagnetic plane wave by an imperfectly conducting rectangular cylinder. J. Eng. Math. 76, 157–180 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chandler-Wilde, S.N., Langdon, S.: A Galerkin boundary element method for high frequency scattering by convex polygons. SIAM J. Numer. Anal. 45(2), 610–640 (2007)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Chandler-Wilde, S.N., Langdon, S., Mokgolele, M.: A high frequency boundary element method for scattering by convex polygons with impedance boundary conditions. Commun. Comput. Phys. 11, 573–593 (2012)MathSciNetGoogle Scholar
  11. 11.
    Betcke, T., Spence, E.A.: Numerical estimation of coercivity constants for boundary integral operators in acoustic scattering. SIAM J. Numer. Anal. 49(4), 1572–1601 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Lindner, M.: Condition number estimates for combined potential boundary integral operators in acoustic scattering. J. Integral Equ. Appl. 21(2), 229–279 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Bruno, O.P.: Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics. In: Topics in Computational Wave Propagation, Lect. Notes Comput. Sci. Eng., vol. 31, pp. 43–82. Springer (2003)Google Scholar
  14. 14.
    Bruno, O.P., Reitich, F.: High order methods for high-frequency scattering applications. In: H. Ammari (ed.) Modeling and Computations in Electromagnetics, Lect. Notes Comput. Sci. Eng., vol. 59, pp. 129–164. Springer (2007)Google Scholar
  15. 15.
    Chandler-Wilde, S.N., Hewett, D.P., Langdon, S., Twigger, A.: A high frequency BEM for scattering by non-convex obstacles. In: Proceedings of 10th Int. Conf. on Mathematical and Numerical Aspects of Waves, Vancouver, Canada, pp. 307–310 (2011)Google Scholar
  16. 16.
    Anand, A., Boubendir, Y., Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. II: the three-dimensional scalar case. Numer. Math. 114(3), 373–427 (2010)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Ecevit, F.: Integral equation formulations of electromagnetic and acoustic scattering problems: convergence of multiple scattering interations and high-frequency asymptotic expansions. Ph.D. thesis, University of Minnesota (2005)Google Scholar
  18. 18.
    Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. Part I: the two-dimensional case. Numer. Math. 114, 271–354 (2009)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Geuzaine, C., Bruno, O., Reitich, F.: On the O(1) solution of multiple-scattering problems. IEEE Trans. Magn. 41, 1488–1491 (2005)CrossRefGoogle Scholar
  20. 20.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  21. 21.
    Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)MATHGoogle Scholar
  22. 22.
    Betcke, T., Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Lindner, M.: Condition number estimates for combined potential boundary integral operators in acoustics and their boundary element discretisation. Numer. Methods PDEs 27(1), 31–69 (2011)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Kress, R.: Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Quart. J. Mech. Appl. Math. 38(2), 323 (1985)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Spence, E.A., Chandler-Wilde, S.N., Graham, I.G., Smyshlyaev, V.P.: A new frequency-uniform coercive boundary integral equation for acoustic scattering. Comm. Pure Appl. Math. 64(10), 1384–1415 (2011)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Chandler-Wilde, S.N., Monk, P.: Wave-number-explicit bounds in time-harmonic scattering. SIAM J. Math. Anal. 39(5), 1428–1455 (2008)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106(3), 471–510 (2007)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Spence, E.A., Kamotski, I.V., Smyshlyaev, V.P.: Coercivity of combined boundary integral equations in high-frequency scattering. Comm. Pure Appl. Math. (2014). http://people.bath.ac.uk/eas25/SpKaSm13.pdf
  28. 28.
    Oberhettinger, F.: On asymptotic series for functions occuring in the theory of diffraction of waves by wedges. J. Math. Phys. 34, 245–255 (1956)MATHMathSciNetGoogle Scholar
  29. 29.
    Bowman, J.J., Senior, T.B.A., Uslenghi, P.L.E.: Electromagnetic and acoustic scattering by simple shapes. Hemisphere Publishing Corp, New York (1987)Google Scholar
  30. 30.
    Digital Library of Mathematical Functions. National Institute of Standards and Technology. http://dlmf.nist.gov/. Released 7 May 2010
  31. 31.
    Titchmarsh, E.C.: Theory of Functions, 2nd edn. OUP, London (1939)MATHGoogle Scholar
  32. 32.
    Chandler-Wilde, S.N.: Boundary value problems for the Helmholtz equation in a half-plane. In: Proceedings of Third Int. Conf. on Mathematical and Numerical Aspects of Wave Propagation, pp. 188–197. SIAM (1995)Google Scholar
  33. 33.
    Schwab, C.: \(p-\) and \(hp-\) Finite Element Methods. Clarendon Press, Oxford (1998)Google Scholar
  34. 34.
    Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)CrossRefMATHGoogle Scholar
  35. 35.
    Twigger, A.: Boundary element methods for high frequency scattering. Ph.D. thesis, University of Reading (2013)Google Scholar
  36. 36.
    Alazah, M., Chandler-Wilde, S.N., La Porte, S.: Computing Fresnel integrals via modified trapezium rules. Numer. Math. (2014). doi:10.1007/s00211-014-0627-z
  37. 37.
    Groth, S.P., Hewett, D.P., Langdon, S.: Hybrid numerical-asymptotic approximation for high frequency scattering by penetrable convex polygons. IMA J. Appl. Math. (2014). doi:10.1093/imamat/hxt040

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. N. Chandler-Wilde
    • 1
  • D. P. Hewett
    • 1
    • 2
  • S. Langdon
    • 1
  • A. Twigger
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of ReadingReadingUK
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations