Numerische Mathematik

, Volume 128, Issue 4, pp 615–634 | Cite as

An adaptive finite element method with asymptotic saturation for eigenvalue problems

  • C. CarstensenEmail author
  • J. Gedicke
  • V. Mehrmann
  • A. Międlar


This paper discusses adaptive finite element methods for the solution of elliptic eigenvalue problems associated with partial differential operators. An adaptive method based on nodal-patch refinement leads to an asymptotic error reduction property for the computed sequence of simple eigenvalues and eigenfunctions. This justifies the use of the proven saturation property for a class of reliable and efficient hierarchical a posteriori error estimators. Numerical experiments confirm that the saturation property is present even for very coarse meshes for many examples; in other cases the smallness assumption on the initial mesh may be severe.

Mathematics Subject Classification (1991)

65N15 65N25 65N30 



The authors would like to thank the anonymous referees for their valuable comments and suggestions.


  1. 1.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Babuška, I., Osborn, J.E.: Eigenvalue Problems. Handbook of Numerical Analysis, vol. II. North Holland, Amsterdam (1991)Google Scholar
  3. 3.
    Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30(4), 921–935 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Third Ed., Texts in Applied Mathematics, vol. 15. Springer, New York (2008)CrossRefGoogle Scholar
  5. 5.
    Betcke, T., Trefethen, L.N.: Reviving the method of particular solutions. SIAM Rev. 47(3), 469–491 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems. Numer. Math. 118(3), 401–427 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Carstensen, C., Gedicke, J.: An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity. SIAM J. Numer. Anal. 50(3), 1029–1057 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dörfler, W., Nochetto, R.H.: Small data oscillation implies the saturation assumption. Numer. Math. 91(1), 1–12 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dörfler, W.: A convergent adaptive algorithm for Poisson‘s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Durán, R.G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110(3), 313–355 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Evans, L.C.: Partial Differential Equations, Second Ed., Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2010)Google Scholar
  13. 13.
    Ferraz-Leite, S., Ortner, C., Praetorius, D.: Convergence of simple adaptive Galerkin schemes based on \(h-h/2\) error estimators. Numer. Math. 116(2), 291–316 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Grubišić, L., Ovall, J.S.: On estimators for eigenvalue/eigenvector approximations. Math. Comp. 78(266), 739–770 (2009)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18(3), 387–409 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Neymeyr, K.: A posteriori error estimation for elliptic eigenproblems. Numer. Linear Algebra Appl. 9(4), 263–279 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Strang, G., Fix, G. J.: An Analysis of the Finite Element Method, Prentice-Hall Inc., Englewood Cliffs, N.J. (1973). Prentice-Hall Series in Automatic ComputationGoogle Scholar
  18. 18.
    Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, Stuttgart (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. Carstensen
    • 1
    • 2
    Email author
  • J. Gedicke
    • 3
  • V. Mehrmann
    • 4
  • A. Międlar
    • 4
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Computational Science and EngineeringYonsei UniversitySeoulKorea
  3. 3.Department of Mathematics and Center for Computation and TechnologyLouisiana State UniversityBaton RougeUSA
  4. 4.Institut für Mathematik, MA 4-5 TU BerlinBerlinGermany

Personalised recommendations