Advertisement

Numerische Mathematik

, Volume 128, Issue 3, pp 431–461 | Cite as

A higher order Finite Volume resolution method for a system related to the inviscid primitive equations in a complex domain

  • Arthur Bousquet
  • Gung-Min Gie
  • Youngjoon Hong
  • Jacques Laminie
Article

Abstract

We construct the cell-centered Finite Volume discretization of the two-dimensional inviscid primitive equations in a domain with topography. To compute the numerical fluxes, the so-called Upwind Scheme (US) and the Central-Upwind Scheme (CUS) are introduced. For the time discretization, we use the classical fourth order Runge–Kutta method. We verify, with our numerical simulations, that the US (or CUS) is a robust first (or second) order scheme, regardless of the shape or size of the topography and without any mesh refinement near the topography.

Mathematics Subject Classifications (1991)

65M08 86A10 76B70 35L65 

Notes

Acknowledgments

This work was supported in part by NSF Grants DMS 1206438 and DMS 1212141, and by the Research Fund of Indiana University. The authors would like to thank Professor Roger Temam and Dr. Joseph Tribbia for their suggestion and advice.

References

  1. 1.
    Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, New York (1982)Google Scholar
  2. 2.
    Haltiner, G.J.: Numerical Weather Prediction. Wiley, New York (1971)Google Scholar
  3. 3.
    Rogers, R.R., Yau, M.K.: A Short Course in Cloud Physics, 3rd edn. Pergamon Press Oxford, New York (1989)Google Scholar
  4. 4.
    Oliger, Joseph, Sundström, Arne: Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math. 35(3), 419–446 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Temam, R., Tribbia, J.: Open boundary conditions for the primitive and Boussinesq equations. J. Atmos. Sci. 60(21), 2647–2660 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, Q.S., Laminie, J., Rousseau, A., Temam, R., Tribbia, J.: A 2.5D model for the equations of the ocean and the atmosphere. Anal. Appl. (Singap.) 5(3), 199–229 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, Q., Shiue, M.-C., Temam, R.: The barotropic mode for the primitive equations. J. Sci. Comput. 45(1–3), 167–199 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, Q., Temam, R., Tribbia, J.J.: Simulations of the 2.5D inviscid primitive equations in a limited domain. J. Comput. Phys. 227(23), 9865–9884 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rousseau, A., Temam, R., Tribbia, J.: Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity. Discrete Contin. Dyn. Syst. 13(5), 1257–1276 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rousseau, A., Temam, R., Tribbia, J.: Numerical simulations of the inviscid primitive equations in a limited domain. In: Calgaro, C., Coulombel, J.-F., Goudon, T. (eds.) Analysis and Simulation of Fluid Dynamics, Advances in Mathematical Fluid Mechanics, pp. 163–181. Birkhäuser, Basel (2007)Google Scholar
  11. 11.
    Rousseau, A., Temam, R., Tribbia, J.: The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case. J. Math. Pures Appl. (9) 89(3), 297–319 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rousseau, A., Temam, R.M., Tribbia, J.J.: Boundary value problems for the inviscid primitive equations in limited domains. In: Handbook of Numerical Analysis, vol. XIV. Special Volume: Computational Methods for the Atmosphere and the Oceans, vol. 14 of Handbook of Numerical Analysis, pp. 481–575. Elsevier, North-Holland, Amsterdam (2009)Google Scholar
  13. 13.
    Chen, Q., Shiue, M.-C., Temam, R., Tribbia, J.: Numerical approximation of the inviscid 3D primitive equations in a limited domain. ESAIM Math. Model. Numer. Anal. 46(3), 619–646 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hong, Y., Temam, R., Bousquet, A., Tribbia, J.: Numerical weather prediction with primitive equations with humidity in two dimension using finite volume method (preprint)Google Scholar
  15. 15.
    Zelati, M.C., Temam, R.: The atmospheric equation of water vapor with saturation. Boll. Unione Mat. Ital. (9) 5(2), 309–336 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lions, J.-L., Temam, R., Wang, S.H.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5(2), 237–288 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Petcu, M., Temam, R.M., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In: Handbook of Numerical Analysis, vol. XIV. Special Volume: Computational Methods for the Atmosphere and the Oceans, vol. 14 of Handbook of Numerical Analysis, pp. 577–750. Elsevier, North-Holland, Amsterdam (2009)Google Scholar
  18. 18.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  19. 19.
    Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education Limited, London (2007)Google Scholar
  20. 20.
    Adamy, K., Bousquet, A., Faure, S., Laminie, J., Temam, R.: A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Model. 33(3–4), 235–256 (2010)CrossRefGoogle Scholar
  21. 21.
    Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 36(3), 397–425 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kurganov, A., Petrova, G.: Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31(3), 1742–1773 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kurganov, A., Petrova, G., Popov, B.: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Calhoun, D., LeVeque, R.J.: A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries. J. Comput. Phys. 157(1), 143–180 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    LeVeque, R.J.: Cartesian grids and rotated difference methods for multi-dimensional flow. In: Proceedings of International Conference on Scientific Computation (Hangzhou, 1991), vol. 1 of Series Applied Mathematics, pp. 76–85. World Scientific Publishing, River Edge, NJ (1992)Google Scholar
  29. 29.
    LeVeque, R.J., Calhoun, D.: Cartesian grid methods for fluid flow in complex geometries. In: Fauci, L.J., Gueron, S. (eds.) Computational modeling in biological fluid dynamics (Minneapolis, MN, 1999), vol. 124, pp. 117–143. IMA Volumes in Mathematics and its Applications, Springer, New York (2001)Google Scholar
  30. 30.
    Huang, W., Kappen, A.M.: A study of cell-center finite volume methods for diffusion equations. Electronic (1998)Google Scholar
  31. 31.
    Gie, G.-M., Temam, R.: Cell centered finite volume methods using Taylor series expansion scheme without fictitious domains. Int. J. Numer. Anal. Model. 7(1), 1–29 (2010)MathSciNetGoogle Scholar
  32. 32.
    Gie, G.-M., Temam, R.: Convergence of the cell-centered Finite Volume discretization method (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Arthur Bousquet
    • 1
  • Gung-Min Gie
    • 1
  • Youngjoon Hong
    • 1
  • Jacques Laminie
    • 2
  1. 1.The Institute for Scientific Computing and Applied MathematicsIndiana UniversityBloomingtonUSA
  2. 2.Université des Antilles et de la GuyanePointe-à-PitreFrance

Personalised recommendations