Numerische Mathematik

, Volume 128, Issue 3, pp 489–516 | Cite as

Geometric error of finite volume schemes for conservation laws on evolving surfaces

Article

Abstract

This paper studies finite volume schemes for scalar hyperbolic conservation laws on evolving hypersurfaces of \(\mathbb {R}^3\). We compare theoretical schemes assuming knowledge of all geometric quantities to (practical) schemes defined on moving polyhedra approximating the surface. For the former schemes error estimates have already been proven, but the implementation of such schemes is not feasible for complex geometries. The latter schemes, in contrast, only require (easily) computable geometric quantities and are thus more useful for actual computations. We prove that the difference between approximate solutions defined by the respective families of schemes is of the order of the mesh width. In particular, the practical scheme converges to the entropy solution with the same rate as the theoretical one. Numerical experiments show that the proven order of convergence is optimal.

Mathematics Subject Classification (2000)

65M08 35L65 58J45 

References

  1. 1.
    Alke, A., Bothe, D.: 3d numerical modeling of soluble surfactant at fluidic interfaces based on the volume-of-fluid method. Fluid Dyn. Mater. Process. 5(4), 345–372 (2009)Google Scholar
  2. 2.
    Amorim, P., Ben-Artzi, M., LeFloch, P.G.: Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method. Methods Appl. Anal. 12(3), 291–323 (2005)MathSciNetMATHGoogle Scholar
  3. 3.
    Amorim, P., LeFloch, P.G., Neves, W.: A geometric approach to error estimates for conservation laws posed on a spacetime. Nonlinear Anal. 74(15), 4898–4917 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ben-Artzi, M., Falcovitz, J., LeFloch, P.G.: Hyperbolic conservation laws on the sphere. A geometry-compatible finite volume scheme. J. Comput. Phys. 228(16), 5650–5668 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ben-Artzi, M., LeFloch, P.G.: Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(6), 989–1008 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Booty, M.R., Siegel, M.: A hybrid numerical method for interfacial fluid flow with soluble surfactant. J. Comput. Phys. 229, 3864–3883 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Bothe, D., Prüss, J., Simonett, G.: Well-posedness of a two-phase flow with soluble surfactant. In: Nonlinear Elliptic and Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 64, pp. 37–61. Birkhäuser, Basel (2005)Google Scholar
  8. 8.
    Calhoun, D.A., Helzel, C., LeVeque, R.J.: Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains. SIAM Rev. 50(4), 723–752 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cockburn, B., Coquel, F., LeFloch, P.G.: An error estimate for finite volume methods for multidimensional conservation laws. Math. Comput. 63(207), 77–103 (1994)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dedner, A., Klöfkorn, R., Nolte, M.: DUNE-AluGrid—a parallel-adaptive unstructured grid implementation for DUNE. 2014 (in preparation)Google Scholar
  11. 11.
    Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive discretization schemes: abstraction principles and the DUNE-FEM module. Computing 90(3–4), 165–196 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–827 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dziuk, G., Elliott, C.M.: Surface finite elements for parabolic equations. J. Comput. Math. 25(4), 385–407 (2007)MathSciNetGoogle Scholar
  15. 15.
    Dziuk, G., Kröner, D., Müller, T.: Scalar conservation laws on moving hypersurfaces. Interfaces Free Bound. 15(2), 203–236 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Giesselmann, J.: A convergence result for finite volume schemes on Riemannian manifolds. M2AN. Math. Model. Numer. Anal. 43(5), 929–955 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Giesselmann, J., Wiebe, M.: Finite volume schemes for balance laws on time-dependent surfaces. In: Numerical Methods for Hyperbolic Equations, pp. 251–258. CRC Press, London (2012)Google Scholar
  18. 18.
    Gilman, P.A.: Magnetohydrodynamic ”shallow-water” equations for the solar tachocline. Astrophys. J. Lett. 544(1), L79–L82 (2000)CrossRefGoogle Scholar
  19. 19.
    Giraldo, F.X.: High-order triangle-based discontinuous galerkin methods for hyperbolic equations on a rotating sphere. J. Comput. Phys. 214(2), 447–465 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    James, J., Lowengrub, J.: A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201(2), 685–722 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    LeFloch, P.G., Okutmustur, B.: Hyperbolic conservation laws on spacetimes. A finite volume scheme based on differential forms. Far East J. Math. Sci. (FJMS) 31(1), 49–83 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    LeFloch, P.G., Okutmustur, B., Neves, W.: Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes. Acta Math. Sin. (Engl. Ser.) 25(7), 1041–1066 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lengeler, D., Mller, T.: Scalar conservation laws on constant and time-dependent riemannian manifolds. J. Differ. Equ. 254(4), 1705–1727 (2013)CrossRefMATHGoogle Scholar
  24. 24.
    Lenz, M., Nemadjieu, S.F., Rumpf, M.: A convergent finite volume scheme for diffusion on evolving surfaces. SIAM J. Numer. Anal. 49(1), 15–37 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Reister, E., Seifert, U.: Lateral diffusion of a protein on a fluctuating membrane. EPL (Europhys. Lett.) 71(5), 859 (2005)CrossRefGoogle Scholar
  26. 26.
    Rossmanith, J.A.: A wave propagation algorithm for hyperbolic systems on the sphere. J. Comput. Phys. 213(2), 629–658 (2006)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Schecter, D.A., Boyd, J.F., Gilman, P.A.: ”shallow-water” magnetohydrodynamic waves in the solar tachocline. Astrophys. J. Lett. 551(2), L185–L188 (2001)CrossRefGoogle Scholar
  28. 28.
    Stone, H.A.: A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A Fluid Dyn. 2(1), 111–112 (1990)CrossRefGoogle Scholar
  29. 29.
    Van Oosterom, A., Strackee, J.: The solid angle of a plane triangle. IEEE Trans. Biomed. Eng. BME–30(2), 125–126 (1983)CrossRefGoogle Scholar
  30. 30.
    Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102(1), 211–224 (1992)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Weierstrass InstituteBerlinGermany
  2. 2.Abteilung für Angewandte MathematikUniversität FreiburgFreiburgGermany

Personalised recommendations