Advertisement

Numerische Mathematik

, Volume 128, Issue 1, pp 1–29 | Cite as

Higher order stable generalized finite element method

  • Qinghui Zhang
  • Uday BanerjeeEmail author
  • Ivo Babuška
Article

Abstract

The generalized finite element method (GFEM) is a Galerkin method, where the trial space is obtained by augmenting the trial space of the standard finite element method (FEM) by non-polynomial functions, called enrichments, that mimic the local behavior of the unknown solution of the underlying variational problem. The GFEM has excellent approximation properties, but its conditioning could be much worse than that of the FEM. However, if the enrichments satisfy certain properties, then the conditioning of the GFEM is not worse than that of the standard FEM, and the GFEM is referred to as the stable GFEM (SGFEM). In this paper, we address the higher order SGFEM that yields higher order convergence and suggest a specific modification of the enrichment function that guarantees the required conditioning, yielding a robust implementation of the higher order SGFEM.

Mathematics Subject Classfication

65N12 65N15 65N30 

References

  1. 1.
    Abbas, S., Alizada, A., Fries, T.P.: The xfem for high-gradient solutions in convection-dominated problems. Int. J. Numer. Methods Eng. 82, 1044–1072 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aragón, A.M., Duarte, C.A., Geubelle, P.H.: Generalized finite element enrichment functions for discontinuous gradient field. Int. J. Numer. Methods Eng. 10, 1–6 (2008)Google Scholar
  3. 3.
    Babuška, I., Banerjee, U.: Stable generalized finite element method. Comput. Methods Appl. Mech. Eng. 201–204, 91–111 (2011)Google Scholar
  4. 4.
    Babuška, I., Banerjee, U., Osborn, J.: Survey of meshless and generalized finite element methods. Acta Numer. 12, 1–125 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Babuška, I., Banerjee, U., Osborn, J.: Superconvergence in generalized finite element method. Numer. Math. 107, 353–395 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Babuška, I., Caloz, G., Osborn, J.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Babuška, I., Melenk, J.M.: The partition of unity finite element method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Béchet, E., Minnebo, H., Moës, N., Burgardt, B.: Improved implementation and robustness study of the X-FEM method for stress analysis around cracks. Int. J. Numer. Methods Eng. 64, 1033–1056 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bochev, P., Lehoucq, R.: On the finite element solution of the pure Neumann problem. SIAM Rev. 47(1), 50–66 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chahine, E., Laborde, P., Renard, Y.: A non-conformal extended finite element approach: integral matching XFEM. Appl. Numer. Math. 61, 322–343 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, L., Rabczuk, T., Bordas, S.P.A., Liu, G.R., Zeng, K.Y., Kerfriden, P.: Extended finite element method with edge-based strain smoothing (Esm-XFEM) for linear elastic crack growth. Comput. Methods Appl. Mech. Eng. 209–212, 250–265 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chu, C.C., Graham, I.G., Hou, T.Y.: A new multiscale finite element method for high contrast elliptic interface problems. Math. Comput. 79(272), 1915–1955 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Dolbow, J., Harari, I.: An efficient finite element method for embedded interface problems. Int. J. Numer. Methods Eng. 78, 229–252 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Method. Springer, Berlin (2009)Google Scholar
  16. 16.
    Gerstenberger, A., Tuminaro, R.: An algebraic multigrid approach to solve XFEM based fracture problem. Int. J. Numer. Methods Eng. 00, 1–26 (2012). doi: 10.1002/nme Google Scholar
  17. 17.
    Gerstenberger, A., Wall, W.A.: An extended finite element method/lagrange multiplier based approach for fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 197, 1699–1714 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Griebel, M., Schweitzer, M.A.: A particle-partition of unity method, Part II: efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Haasemann, G., Kastner, M., Pruger, S., Ulbricht, V.: Development of quadratic finite element formulations based on XFEM and NURBS. Int. J. Numer. Methods Eng. 86, 598–617 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hou, T.Y., Wu, X.H., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68, 913–943 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Kästner, M., Haasemann, G., Ulbricht, V.: Multiscale XFEM-modeling and simulation of the inelastic material behaviour of textile-reinforced polymers. Int. J. Numer. Methods Eng. 86, 477–498 (2011)zbMATHCrossRefGoogle Scholar
  23. 23.
    Laborde, P., Pommier, J., Renard, Y., Salaün, M.: High order extended finite element method for cracked domains. Int. J. Numer. Methods Eng. 64, 354–381 (2005)zbMATHCrossRefGoogle Scholar
  24. 24.
    Mayer, U.M., Gerstenberger, A., Wall, W.A.: Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction. Int. J. Numer. Methods Eng. 79, 846–869 (2009)zbMATHCrossRefGoogle Scholar
  25. 25.
    Melenk, J.M., Babuška, I.: The partition of unity finite element method: theory and application. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)zbMATHCrossRefGoogle Scholar
  26. 26.
    Melenk, J.M., Babuška, I.: Approximation with harmonic and generalized harmonic polynomials in the partition of unity method. Comput. Assist. Mech. Eng. Sci. 4, 607–632 (1997)zbMATHGoogle Scholar
  27. 27.
    Menk, A., Bordas, S.P.A.: A robust preconditioning technique for the extended finite element method. Int. J. Numer. Methods Eng. 85(13), 1609–1632 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)zbMATHCrossRefGoogle Scholar
  29. 29.
    Rabczuk, T., Bordas, S., Zi, G.: On three-dimensional modelling of crack growth using partition of unity methods. Comput. Struct. 88, 1391–1411 (2010)CrossRefGoogle Scholar
  30. 30.
    Schweitzer, M.A.: Stable enrichment and local preconditioning in the particle-partition of unity method. Numer. Math. 118, 137–170 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Souza, F.V., Allen, D.H.: Modeling the transition of microcracks into macrocracks in heterogeneous viscoelastic media using two-way coupled multiscale model. Int. J. Solids Struct. 48, 3160–3175 (2011)CrossRefGoogle Scholar
  32. 32.
    Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181, 43–69 (2001)CrossRefGoogle Scholar
  33. 33.
    Strouboulis, T., Copps, K., Babuška, I.: The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190, 4081–4193 (2001)zbMATHCrossRefGoogle Scholar
  34. 34.
    Sukumar, N., Moes, N., Moran, B., Belytschko, T.: Extended finite element method for three dimensional crack modelling. Int. J. Numer. Methods Eng. 48(11), 1549–1570 (2000)zbMATHCrossRefGoogle Scholar
  35. 35.
    Yvonnet, J., Quang, H.L., He, Q.C.: A XFEM/level set approach to modeling surface/interface effects and to computing the size-dependent effective properties of nanocomposities. Comput. Mech. 42, 119–131 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Zilian, A., Legay, A.: The enriched space-time finite element method (EST) for simultaneous solution of fluid-structure interaction. Int. J. Numer. Methods Eng. 75, 305–334 (2008)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Guangdong Province Key Laboratory of Computational Science and Department of Scientific Computing and Computer ApplicationsSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Mathematics, 215 CarnegieSyracuse UniversitySyracuseUSA
  3. 3.ICESUniversity of Texas at AustinAustinUSA

Personalised recommendations