Numerische Mathematik

, Volume 126, Issue 4, pp 589–633 | Cite as

Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales



A discontinuous Galerkin finite element heterogeneous multiscale method is proposed for advection–diffusion problems with highly oscillatory coefficients. The method is based on a coupling of a discontinuous Galerkin discretization for an effective advection–diffusion problem on a macroscopic mesh, whose a priori unknown data are recovered from micro finite element calculations on sampling domains within each macro element. The computational work involved is independent of the high oscillations in the problem at the smallest scale. The stability of our method (depending on both macro and micro mesh sizes) is established for both diffusion dominated and advection dominated regimes without any assumptions about the type of heterogeneities in the data. Fully discrete a priori error bounds are derived for locally periodic data. Numerical experiments confirm the theoretical error estimates.

Mathematics Subject Classification (2010)

65N12 65N15 65N3 74Q05 



This work was supported in part by the Swiss National Science Foundation under Grant 200021 134716/1.


  1. 1.
    Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23(6), 2041–2054 (2002)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Abdulle, A.: Multiscale methods for advection-diffusion problems. Discrete Contin. Dyn. Syst. suppl., 11–21 (2005)Google Scholar
  3. 3.
    Abdulle, A.: On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4(2), 447–459 (2005)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Abdulle, A.: Analysis of a heterogeneous multiscale FEM for problems in elasticity. Math. Models Methods Appl. Sci. 16(4), 615–635 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Abdulle, A.: Multiscale method based on discontinuous Galerkin methods for homogenization problems. C. R. Acad. Sci. Paris, Ser. I 346(1–2), 97–102 (2008).Google Scholar
  6. 6.
    Abdulle, A.: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. GAKUTO Int. Ser. Math. Sci. Appl. 31, 135–184 (2009)Google Scholar
  7. 7.
    Abdulle, A.: Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales. Math. Comput. 81(278), 687–713 (2012)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Abdulle, A., Bai, Y.: Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J. Comput. Phys. 231(21), 7014–7036 (2012)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Abdulle, A., E, W., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)Google Scholar
  10. 10.
    Abdulle, A., Medovikov, A.A.: Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 90(1), 1–18 (2001)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Abdulle, A., Nonnenmacher, A.: A short and versatile finite element multiscale code for homogenization problems. Comput. Methods Appl. Mech. Eng. 198(37–40), 2839–2859 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Abdulle, A., Vilmart, G.: Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Math. Comput. (2013, in press)Google Scholar
  13. 13.
    Acerbi, E.: Convergence of second order elliptic operators in complete form. Boll. Unione Mat. Ital. (B) 18(5), 539–555 (1981)MATHMathSciNetGoogle Scholar
  14. 14.
    Agmon, S.: Lectures on Elliptic Boundary Value Problems. D. Van Nostrand Co., Princeton (1965)MATHGoogle Scholar
  15. 15.
    Allaire, G., Raphael, A.: Homogenization of a convection-diffusion model with reaction in a porous medium. C. R. Math. Acad. Sci. Paris 344(8), 523–528 (2007)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Ayuso, B., Marini, L.D.: Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 47(2), 1391–1420 (2009)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic analysis for periodic structures, volume 5. North Holland (1978).Google Scholar
  20. 20.
    Burman, E., Zunino, P.: A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44(4), 1612–1638 (2006)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Chen, S., E, W., Shu, C.-W.: The heterogeneous multiscale method based on the discontinuous Galerkin method for hyperbolic and parabolic problems. Multiscale Model. Simul. 3(4), 871–894 (2005)Google Scholar
  22. 22.
    Ciarlet, P.G.: The finite element method for elliptic problems, volume 4. North-Holland (1978).Google Scholar
  23. 23.
    Ciarlet, P.G., Raviart, P.A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In: Aziz, A.K. (ed.) Math. Foundation of the FEM with Applications to PDE, pp. 409–474. Academic Press, New York (1972).Google Scholar
  24. 24.
    Cockburn, B., Dong, B., Guzmán, J., Qian, J.: Optimal convergence of the original DG method on special meshes for variable transport velocity. SIAM J. Numer. Anal. 48(1), 133–146 (2010)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193(23–26), 2565–2580 (2004)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    De Giorgi, E., Spagnolo, S.: Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine. Boll. Unione Mat. Ital. 4(8), 391–411 (1973)Google Scholar
  27. 27.
    Du, R., Ming, P.: Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 8(4), 863–885 (2010)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    E, W., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)Google Scholar
  29. 29.
    E, W., Ming, P., Zhang, P.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18(1), 121–156 (2004)Google Scholar
  30. 30.
    Henning, P., Ohlberger, M.: The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Netw. Heterog. Media 5(4), 711–744 (2010)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Hill, T.R., Reed, W.H.: Triangular mesh methods for the neutron transport equation. Los Alamos, Report LA-UR-73-479 (1973).Google Scholar
  32. 32.
    Hou, T.Y., Park, P.J.: Multiscale numerical methods for singularly perturbed convection-diffusion equations. Int. J. Comput. Methods 1(1), 17–65 (2004)CrossRefMATHGoogle Scholar
  33. 33.
    Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of differential operators and integral functionals. Springer, Berlin (1994)Google Scholar
  35. 35.
    Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46(173), 1–26 (1986)CrossRefMATHGoogle Scholar
  36. 36.
    Marcellini, P.: Convergence of second order linear elliptic operators. Boll. Unione Mat. Ital. (B) 16(5), 278–290 (1979)MATHMathSciNetGoogle Scholar
  37. 37.
    Murat, F., Tartar, L.: H-convergence, topics in the mathematical modeling of composite materials. Progr. Nonlinear Differ. Equ. Appl. 31, 21–43 (1997)MathSciNetGoogle Scholar
  38. 38.
    Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14(82), 445–508 (2005)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Wallstrom, T.C., Hou, S., Christie, M.A., Durlofsky, L.J., Sharp, D.H.: Accurate scale up of two phase flow using renormalization and nonuniform coarsening. Comput. Geosci. 3(1), 69–87 (1999)CrossRefMATHGoogle Scholar
  40. 40.
    Yu, T., Yue, X.: Heterogeneous multiscale discontinuous Galerkin method for convection-diffusion problems (2011, preprint).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ANMC, Mathematics SectionÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations